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Abstract—In this paper, we investigate the PHY-layer authen-
tication that exploits the spatial decorrelation property of radio
channel information to detect spoofing attacks in multiple-input
multiple-output (MIMO) systems. We formulate the interactions
between a receiver that applies the PHY-layer MIMO authenti-
cation technique and a spoofing node as a zero-sum game. In this
game, the receiver chooses the test threshold of the hypothesis
test of the PHY-layer authentication to maximize its utility based
on the Bayesian risk in the spoofing detection. The adversary
chooses its attack frequency, i.e., how often a spoofing packet is
sent over multiple antennas. The unique Nash equilibrium of the
static MIMO authentication game is derived and the condition for
its existence is presented regarding the number of antennas. We
also investigate the dynamic authentication game, and propose a
PHY-layer MIMO authentication based on Q-learning to achieve
the optimal test threshold in the spoofing detection via trials,
and implement it over universal software radio peripherals. The
performance of the spoofing detection algorithm is evaluated via
experiments in indoor environments.

Index Terms—MIMO, PHY-layer authentication, spoofing de-
tection, game theory, learning

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques can im-
prove the capacity and reliability of wireless communications,
and enhance the resistance against eavesdropping [1]. Howev-
er, MIMO transmissions are vulnerable to spoofing attacks, in
which a spoofing node with multiple transmit antennas claims
to be another transmitter by using a faked identity such as a
faked MAC address. Spoofing attacks can not only result in
illegal advantages and access rights of the adversary, but also
lead to man-in-the-middle attacks and denial-of-service attacks
[2]. Therefore, physical (PHY)-layer authentication techniques
have been proposed to exploit the PHY-layer properties of
radio propagations, such as received signal strengths [2], [3]
and channel impulse responses [4] to detect spoofing attacks
in wireless networks.

Game theoretic study on PHY-layer spoofing detection in [5]
investigates the interactions between an attacker and a receiver
that applies the PHY-layer authentication scheme. If radio
nodes are unaware of the channel model in dynamic wireless
networks, the receiver can apply Q-learning, the model-free
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reinforcement learning techniques [6], to derive the optimal
hypothesis test policy to maximize its expected long-term
accumulative utility via trial-and-error [7].

In this paper, we extend the game theoretic study on
PHY-layer authentication to MIMO systems and formulate
a channel-based MIMO authentication game. In the zero-
sum game, a spoofing node chooses how frequently to send
spoofing signals to maximize its utility based on the Bayesian
risks in the spoofing detection. The receiver determines its test
threshold in the hypothesis test of the channel-based spoofing
detection. The Nash equilibrium (NE) of the static MIMO
authentication game is presented, showing that the number of
antennas affects the spoofing frequency and detection.

We also investigate a dynamic MIMO authentication game,
in which the receiver exploits the received signal strength
indicators (RSSIs) without being aware of the radio channel
model and the spoofing policy. Based on Q-learning, a receiver
decides its test threshold in the hypothesis test by updating
a quality function of each state-action combination and can
achieve the optimal policy if this selection is a finite Markov
decision process.

The contributions of our work can be summarized as
follows:

(1) We formulate the interactions between a receiver per-
forming PHY-layer spoofing detection and a spoofing node
with multiple antennas as a zero-sum MIMO authentication
game. The NE of the game is derived. The condition and the
uniqueness of the NE are discussed.

(2) We propose a PHY-layer MIMO spoofing detection
based on Q-learning in dynamic wireless networks, and per-
form experiments over universal software radio peripherals
(USRPs) in indoor environments to validate its efficacy.

The rest of this paper is organized as follows. We review
related work in Section II, and present the system model in
Section III. We formulate the PHY-layer MIMO authentication
game in Section IV, and present dynamic PHY-layer MIMO
game with Q-learning in Section V. Experiment results are
presented in Section VI. In Section VII, we conclude this
work.



II. RELATED WORK

The spatial decorrelation property of wireless medium has
been exploited in [8] to detect spoofing attacks in MIMO sys-
tems. Secrecy beamforming and artificial noise transmission
have been applied in [9] to enhance the PHY-layer secrecy
in multiple antennas wireless systems. A channel responses
based detection scheme for MIMO systems was developed
in [10] to detect primary user emulation attacks in cognitive
radio networks. A channel-based authentication scheme over
MIMO fading channels proposed in [11] can address multiple
impersonation attack strategies.

A game-theoretic study of channel assignment performed
in [12] investigated the MIMO transmissions in time-varying
wireless channels, and a learning-based algorithm was pro-
posed to approach to the NE strategy. A cooperative game
formulated in [13] investigates the path loss and the transmit
power for power budget for all the transmit radars to track
a target in MIMO networks. An MIMO transmission game
introduced in [14] investigates the dual-threat attacker that
performs both eavesdropping and jamming.

We have formulated a zero-sum authentication game in [5]
to investigate the interactions between a legitimate receiver
and a spoofing node in a single antenna system. Compared
with our previous work in [5], we extend the study to MIMO
systems and investigate the impacts of the number of antennas
on the PHY-layer authentication game. We also provide the
NE condition of the MIMO PHY-layer authentication game,
considering the spoofing cost in the utility function, which was
omitted in [5].

III. SYSTEM MODEL
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Fig. 1. Illustration of a spoofing detection game consisting of a legal
transmitter Alice with Nt antennas, a spoofing node Eve, and a receiver Bob
with Nr antennas.

As shown in Fig. 1, we consider the spoofing detection of
a receiver called Bob (B), the legal transmitter called Alice
(A) and spoofing node called Eve (E) in a Nt × Nr MIMO
system. The signals are sent over Nt antennas each at center
frequency f0 with bandwidth W .

Based on the training symbols or preambles of the signal,
Bob estimates the channel gain and compares it with the
channel record of Alice to determine whether the correspond-
ing signal is actually send by Alice. More specifically, Bob
obtains the channel vector at time k denoted by Hk

t =

[
hk
t (m,n)

]
1≤m≤Nt, 1≤n≤Nr

, and the channel record of Alice

denoted by Ĥ =
[
ĥ(m,n)

]
1≤m≤Nt, 1≤n≤Nr

, where ht(m,n)

is the channel gain from the m-th transmit antenna to the n-th
receive antenna at time k, while ĥ(m,n) is the corresponding
channel record of Alice in the previous transmission. Bob
estimates the channel gains at M tones for each of the NtNr

antenna pairs.
Let xk

A/E denote the Nt-dimensional transmitted signal
from Alice (or Eve) at time k, Hk

A/E be the Nt ×Nr matrix
of channel gain between Alice (or Eve) and Bob, and zA/E

be the corresponding Nr-dimensional noise at the receiver.
The signal from Alice (or Eve) received by Bob at time k is
denoted by yk

A/E and given respectively by

yk
A = xk

AH
k
A + zA

yk
E = xk

EH
k
E + zE . (1)

Let σ2 be the average power gain along the path from
Alice to Bob, ρ be the average signal-to-noise ratio (SNR)
of the signal received by Bob, α indicate the channel time
variation due to the radio environment changes, and β present
the average ratio of the SNR of the signal sent by Eve to that
of Alice. For ease of reference, the commonly used notations
are summarized in TABLE 1.

TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS

α Channel gain time variation

β Average ratio of the SNR of Eve to that of Alice

ρ Average SNR of the received signal

Nt/r Number of transmit/receive antennas

Hk
A/E

Channel gain from Alice/Eve to Bob at time k

Hk
t Channel vector under test at time k

Ĥ Channel record of signals from Alice

M Number of frequency samples

x ∈ [0,∞) Test threshold

y ∈ [0, 1] Spoofing frequency

uB/E Immediate utility of Bob/Eve

G1/0 Gain of Bob to accept/reject a signal from Alice/Eve

C1/0 Cost of Bob to reject/accept a signal from Alice/Eve

Cs Cost of Eve to send a spoofing signal

pf/m False alarm rate/miss detection rate

IV. MIMO PHY-LAYER AUTHENTICATION GAME

Based on the spatial decorrelation of radio channel states,
Bob detects spoofing attacks by comparing the estimated
channel matrix at time k, Hk

t with the channel record of Alice
Ĥ. In the spoofing detection, the null hypothesis H0 indicates
that the signal is indeed sent by Alice, while the alternative
hypothesis H1 indicates that the claimant terminal is Eve. The
spoofing detection builds the hypothesis test given by

H0 : Hk
t = Hk

A

H1 : Hk
t ̸= Hk

A. (2)



The hypothesis test is based on the sampled channel fre-
quency responses over the NtNr antenna pairs at M frequen-
cies. According to (2), the channel responses are significantly
different from the channel records of Alice, Bob reports an
spoofing alarm at time k. Otherwise, there is every reason to
believe that the transmitter is Alice. Bob calculates the statistic,
denoted by L, that was chosen by [5] as the normalized
Euclidean distance between the channel response Hk

t and the
channel record Ĥ. Thus, we have

L
(
Hk

t , Ĥ
)
=

∥∥Hk
t − Ĥ

∥∥2∥∥Ĥ∥∥2 , (3)

where ∥·∥ is the Frobenius norm. Bob compares the test thresh-
old x ∈ [0,∞) with the test statistic L. More specifically, if
the test statistic is less than x, Bob accepts the null hypothesis
H0; otherwise, Bob accepts H1. Thus the hypothesis test in
the PHY-layer spoofing detection is given by

L
(
Hk

t , Ĥ
)H0

≶
H1

x. (4)

The detection accuracy of the PHY-layer authentication in
(4) depends on the test threshold x. A small test threshold
increases the probability to successfully detect Eve, and the
probability for Bob to take Alice as Eve. The false alarm rate,
denoted by pf , is the probability that Alice’s signal is viewed
as a spoofing one, i.e.,

pf (x) = Pr (H1|H0) = Pr
(
L
(
Hk

A, Ĥ
)
> x

)
, (5)

where Pr(·|·) is the conditional probability. It is clear that the
probability for Bob to accept a signal from Alice is 1 − pf .
Similarly, the miss detection rate, denoted by pm, is defined
as the probability that a spoofing signal passes the detection,
which is given by

pm(x) = Pr (H0|H1) = Pr
(
L
(
Hk

E , Ĥ
)
≤ x

)
. (6)

The probability for Bob to reject a signal from Eve is 1−pm.
Bob applies the higher-layer authentication methods such

as [15], [16] to process the signal that passes the PHY-layer
authentication. A signal is accepted by Bob if and only if it
passes both the PHY-layer and higher-layer authentications. In
this case, the channel record of Alice is updated with Ĥ ←
Hk

t .
The PHY-layer spoofing detection can be formulated as a

zero-sum game denoted by G consisting of a receiver (Bob)
and a spoofing node (Eve). Eve sends faked frames and
pretends to be a legal transmitter Alice, while Bob applies the
PHY-layer authentication to discriminate the spoofing signals.
The action of Eve, denoted by y ∈ [0, 1], is the probability that
Eve sends a spoofing frame. Bob chooses the test threshold in
the hypothesis test, x ∈ [0,∞), in the spoofing detection. In
the zero-sum game, the utility of Bob and that of Eve, denoted
by uB and uE , respectively, satisfy uE(x, y) = −uB(x, y).

The payoff for Bob to accept a legitimate signal (or reject
a faked one) is denoted by G1 (or G0). The cost for Bob
to falsely reject a legitimate signal (or accept a faked one)

is denoted by C0 (or C1), while the cost for Eve to send
a spoofing signal is denoted by Cs. Based on the detection
accuracy and the power consumption in the spoofing detection
in the time slot, the utility of Bob, denoted by uB , can be
defined as

uB(x, y) = Csy +
(
G1

(
1− pf (x)

)
− C1pf (x)

)
(1− y)

+
(
G0

(
1− pm (x)

)
− C0pm(x)

)
y = −uE(x, y). (7)

In summary, we consider a PHY-layer authentication zero-
sum game, G = ⟨{B,E}, {x, y}, {uB , uE}⟩, in which Bob
chooses its test threshold x ∈ [0,∞), while Eve determines
its spoofing frequency y ∈ [0, 1].

As a concrete example, we assume that Bob detects spoofing
based on the estimated channel frequency responses of the
radio signals Hk

t and the channel record of Alice Ĥ. For
simplicity, we also assume zero phase shift between channel
measurements. In the frequency-selective Rayleigh channel
models, Bob performs the generalized likelihood ratio test,
in which the test statistic in [8] is replaced by L′, as

L′
(
Hk

t , Ĥ
)
=
∥∥∥Hk

t − Ĥ
∥∥∥2 ∼ χ2 (2NtNrM) , (8)

where χ2(m) is a Chi-square distribution with m degrees of
freedom.

Based on the test statistic in (8), it is shown in [8] that the
false alarm rate and the miss detection rate of the hypotheses
test in the spoofing detection are given by

pf (x) = 1− Fχ2

(
2xρ

σ2 (2 + αρ)
, 2NtNrM

)
(9)

pm(x) = Fχ2

(
2xρ

σ2(2 + ρ+ βρ)
, 2NtNrM

)
, (10)

where Fχ2(·,m) is the cumulative distribution function of a
Chi-square distribution with m degrees of freedom.

The Nash equilibrium of the static PHY-layer authentication
game G is denoted by (x∗, y∗). By definition, neither the re-
ceiver nor the adversary can increase its utility by unilaterally
choosing a different strategy, i.e.,

x∗ = argmax
x≥0

uB (x, y∗) (11)

y∗ = arg min
0≤y≤1

uB (x∗, y) . (12)

Theorem 1. If the channel gains over M frequencies are
independent and identically distributed, and{

Cs < G1 + C0 (13a)
α ≤ β + 1, (13b)

the static MIMO PHY-layer authentication game G has a
unique NE (x∗, y∗), given by (14) and (15).

Proof. By (9) and (10), we have pf (0) = 1, pm(0) = 0,
lim
x→∞

pf (x) = 0 and lim
x→∞

pm(x) = 1. By (7), we have

∂uE

∂y
=G1 −G0 − (G1 + C1)pf (x) + (G0 + C0)pm(x)− Cs,

(16)



(G1 + C1)Fχ2

(
2ρx∗

σ2 (2 + αρ)
, 2NtNrM

)
= G0 + Cs + C1 − (G0 + C0)Fχ2

(
2ρx∗

σ2(2 + ρ+ βρ)
, 2NtNrM

)
(14)

y∗ =

(
1 +

G0 + C0

G1 + C1

(
2ρ−1 + α

2ρ−1 + 1 + β

)NtNrM

e
(β+1−α)ρ2x∗

σ2(2+αρ)(2+ρ+βρ)

)−1

(15)

indicating that if G1 + C0 > Cs,

∂uE(0, y)

∂y
= −G0 − C1 − Cs < 0 (17)

lim
x→∞

∂uE(x, y)

∂y
= G1 + C0 − Cs > 0. (18)

Let x̂ be the solution of ∂uE(x, y)/∂y = 0. By (16), (9) and
(10), we have (14) after simplication, showing that x̂ is unique
and positive. If x > x̂, we have ∂uE(x, y)/∂y > 0; Otherwise,
if 0 ≤ x < x̂, we have ∂uE(x, y)/∂y < 0. By (9) and (10),
we have

∂pf (x)

∂x
= − xNtNrM−1e

− xρ

σ2(2+αρ)(
σ2(2/ρ+ α)

)NtNrM
Γ (NtNrM)

(19)

∂pm(x)

∂x
=

xNtNrM−1e
− xρ

σ2(2+ρ+βρ)(
σ2(2/ρ+ 1 + β)

)NtNrM
Γ (NtNrM)

, (20)

where Γ(·) is the Gamma function.
By (19), (20) and (7), we have

∂uB(x, y)

∂x
=

xNtNrM−1e
− xρ

σ2(2+αρ)

σ2NtNrMΓ (NtNrM) (G1 + C1)(1− y)

(2/ρ+ α)NtNrM
− (G0 + C0)ye

(β+1−α)xρ2

(2+αρ)(2+ρ+βρ)σ2

(2/ρ+ 1 + β)NtNrM

 .

(21)

As ∂uE(x̂, y)/∂y = 0, uE(x̂, y) is constant, ∀y ∈ [0, 1].
Let ŷ be the solution of ∂uB(x̂, y)/∂x = 0, which can be
simplified by (21) into (15). By (21), if β + 1 ≥ α, we have
∂uB(x, ŷ)/∂x ≥ 0 for 0 < x < x̂ and ∂uB(x, ŷ)/∂x ≤ 0 for
x > x̂. Thus, (11) and (12) hold for (x∗, y∗) = (x̂, ŷ).

Next, we consider the uniqueness of the NE by assuming
that there exists another NE, denoted by (x′, y′) ̸= (x∗, y∗).
If 0 ≤ x′ < x∗, we have ∂uE(x

′, y)/∂y < 0 and thus
y′ = 0. By (21), we have ∂uB(x, y

′)/∂x ≥ 0, indicating that
uB(x

′, y′) < uB(x
∗, y′), contradicting to the assumption that

(x′, y′) is an NE. If x′ > x∗, we have ∂uE(x
′, y)/∂y > 0,

yielding y′ = 1. By (21), we have ∂uB(x, y
′)/∂x ≤ 0, and

thus uB(x
′, y′) < uB(x

∗, y′), contradicting to the assumption.
Thus (x∗, y∗) = (x̂, ŷ) is a unique NE in the game.

Theorem 2. The static MIMO PHY-layer authentication game
G has no NE, if

Cs ≥ G1 + C0 (22)

or {
Cs < G1 + C0 (23a)
α > β + 1. (23b)

Proof. If Cs ≥ G1+C0, we have ∂uE(x, y)/∂y < 0, and thus
y∗ = 0. By (21), we have ∂uB(x, 0)/∂x ≥ 0, i.e., x∗ → ∞,
and thus no NE exists.

If Cs < G1+C0, similar to the proof to Theorem 1, no NE
exists if x∗ ̸= x̂, with x̂ given by (14). Otherwise, if x∗ = x̂,
we can infer from (21) and (11) that ∂uB(x

∗, y∗)/∂x = 0,
∂uB(x, y

∗)/∂x > 0, ∀0 < x < x̂, and ∂uB(x, y
∗)/∂x < 0,

∀x > x̂. However, if α > β + 1, by (21) and (15), we have
∂uB(x, y

∗)/∂x < 0, ∀0 < x < x̂, and ∂uB(x, y
∗)/∂x > 0,

∀x > x̂, indicating that x∗ ̸= x̂. Thus, no NE exists in this
case.

By (14) and (15), the NE of game G depends on the
spoofing cost and the relative channel time variation. Under
a small spoofing cost and relative small channel gain time
variation, i.e., (13), Bob chooses his test threshold and Eve
decides her spoofing probability based on the gain, cost
and channel conditions by (14) and (15) to maximize their
individual payoffs. If the channel gain time variation is large,
i.e., (23b), the channel responses change too fast to form a
stable radio fingerprint for spoofing detection and thus no NE
exists. Otherwise, under a large spoofing cost, i.e., (22), the
attack motivation of Eve is suppressed and Bob chooses to
use a high test threshold to avoid false alarm in the spoofing
detection.

V. PHY-LAYER MIMO AUTHENTICATION WITH
Q-LEARNING

The repeated interactions between Bob and Eve, who cannot
accurately estimate the environment model and the action of
the opponent in dynamic wireless networks can be formulated
as a dynamic MIMO PHY-layer authentication game. The
receiver Bob builds the hypothesis test in (4) to discriminate
Alice from Eve. When receiving T frames in a time slot, Bob
has an expected sum utility, denoted by Uk and defined as

Uk =
kT∑

n=(k−1)T+1

un
B(x, y), (24)

where un
B is his immediate utility from the n-th frame given

by (7).
For simplicity, both the false alarm rate and miss detection

rate in each time slot are quantized into X + 1 levels,
i.e., pkf , p

k
m ∈ {l/X}0≤l≤X . The state observed by Bob

at time slot k, denoted by sk, consists of both the false
alarm rate and miss detection rate at the last time slot, i.e.,
sk =

[
pk−1
f , pk−1

m

]
∈ {l/X,m/X}0≤l,m≤X . The feasible test

threshold in the spoofing detection is quantized into K + 1
levels, i.e., xk ∈ {l/K}0≤l≤K .



Algorithm 1 MIMO PHY-layer authentication with Q-
learning.

1: Set Q (s, x) = 0, V (s) = 0, ∀x ∈ {l/K}0≤l≤K , s ∈ S

2: for k = 1, 2, 3, ... do
3: Set xk via (25)
4: for n = 1 to T do
5: Read the MAC address of packet n at time k

6: Channel estimation to obtain Ht

7: Calculate L via (3)
8: if L ≤ xk then
9: Perform the higher-layer authentication

10: if packet n is accepted then
11: Ĥ← Ht

12: else
13: Send spoofing alarm for packet n
14: end if
15: end if
16: end for
17: Observe pf and pm at time k

18: sk+1 = [pf , pm]

19: Update Uk via (24)
20: Q

(
sk, xk

)
← (1− µ)Q

(
sk, xk

)
+ µ

(
Uk + δV

(
sk+1

))
21: V

(
sk
)
← maxx∈{ l

K
}0≤l≤K

Q
(
sk, x

)
22: end for

Let Q(s, x) be the Q-function at state s and action x. The
value function, denoted by V (s), represents the highest value
of state s. The test threshold is chosen by ϵ-greedy policy
given by

Pr (x = ẋ) =

1− ϵ, ẋ = arg max
x∈{ l

K }0≤l≤K

Q (s, x)

ϵ
K , o.w.,

(25)

with 0 < ϵ ≤ 1.
After choosing test threshold xk, Bob builds the hypothesis

test in (3) to authenticate the transmitter at time k. If a frame is
rejected, Bob sends a spoofing alarm, calculates the spoofing
detection accuracy at time k, and updates the expected sum
utility Uk via (24).

The Q function is updated at a learning rate denoted by µ ∈
(0, 1], which represents the extent to which the new detection
experience overrides the existing knowledge on the Q function.
The discount factor δ ∈ (0, 1] indicates the uncertainty on the
rewards in the future interaction. The Q function is updated
based on the current system state sk and test threshold xk, as
summarized in Algorithm 1.

VI. PERFORMANCE EVALUATION

Experiments have been performed to evaluate the per-
formance of the proposed PHY-layer authentication in the
dynamic games, in which 20 radio nodes each equipped with
laptops and USRPs were placed in a 12 × 9.5 × 3 m3 office
room as shown in Fig. 2, with G1 = C1 = 6, G0 = 9, C0 = 4,
Cs = 1, M = 3, f0 = 2.42 GHz, W = 20 MHz, y = 0.5,
µ = 0.8, δ = 0.7 and ϵ = 0.1. Each transmitter equipped

Fig. 2. Network topology of the experiments in a 12 × 9.5 × 3 m3 office
room, consisting of 19 transmitter location, with f0 = 2.42 GHz, M = 3
and W = 20 MHz.

with up to 5 antennas acted as either Alice or Eve, while
Bob received signals with 3 antennas in the experiments. As
comparison, we used the PHY-layer spoofing detection with a
randomly selected threshold as a benchmark.
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Fig. 3. Spoofing detection accuracy of the PHY-layer authentication in 5× 3
MIMO systems, with M = 3, f0 = 2.42 GHz and W = 20 MHz, in
which Alice is at TX3 and Eve locates at TX16, in the wireless network with
topology as shown in Fig. 2.

As shown in Fig. 3, the proposed spoofing detection im-
proves the detection accuracy at a fast convergence speed. For
example, if Alice and Eve are located at TX3 and TX 16,
respectively, the miss detection rate decreases to 5% after 400
time slots, which is 38.9% less than the benchmark, and the
false alarm rate is as small as 3×10−5, which is 17.9% lower
than that of the benchmark strategy.

As shown in Fig. 4(a), the spoofing detection accuracy
improves with the number of receive antennas. For example,
the miss detection rate decreases by 74.2%, and the false
alarm rate decreases by 63.1%, if the number of receive
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(a) Spoofing detection accuracy
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Fig. 4. Average spoofing detection performance of the 5 × Nr MIMO
transmission with M = 3, f0 = 2.42 GHz and W = 20 MHz in the
experiments with topology as shown in Fig. 2.

antennas changes from 1 to 5. In addition, the proposed
spoofing detection exceeds the benchmark strategy with higher
detection accuracy and the performance gain increases with the
number of receive antennas. For instance, the miss detection
rate of the proposed authentication reduces by 60.7% and the
false alarm rate decreases by 41.0%, in the 5 × 4 MIMO
system. The performance gain regarding the miss detection
rate rises from 56.5% to 69.9%, and the gain regarding the
false alarm rate rises from 33.2% to 38.6%, if the number of
receive antennas changes from 2 to 5.

Fig. 4(b) indicates that the average utility of the receiver
increases with the number of receive antennas, e.g., the
average utility increases by 3.2%, if Nr changes from 1 to 5.
Finally, the proposed spoofing detection has performance gain
regarding the utility compared with the benchmark scheme,
e.g., the utility gain is 3.1% in the 3× 5 MIMO system.

VII. CONCLUSIONS

In this work, we have investigated the PHY-layer authen-
tication game in MIMO systems between a receiver and a
spoofing node, and presented the unique NE of the game.
We have also evaluated the dynamic PHY-layer authentication
game with reinforcement learning, in which the test threshold
in the spoofing detection is chosen via Q-learning. We have
performed USRP-based experiments to validate the efficacy of
the proposed Q-learning based PHY-layer authentication. For
example, in the 5×3 MIMO transmission against an adversary
with 20 MHz bandwidth at 2.42 GHz, the proposed PHY-layer
spoofing detection can reduce the miss detection rate to 5%,
which is 38.9% less than the benchmark spoofing detection
scheme, and the false alarm rate is below 3× 10−5.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, pp. 311–335, Mar. 1998.

[2] K. Zeng, K. Govindan, and P. Mohapatra, “Non-cryptographic authen-
tication and identification in wireless networks,” IEEE Trans. Wireless
Commun., vol. 17, pp. 56–62, Oct. 2010.

[3] J. Yang, Y. Chen, W. Trappe, and J. Cheng, “Detection and localization
of multiple spoofing attackers in wireless networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 24, pp. 44–58, Jan. 2013.

[4] F. Liu, X. Wang, and S. Primak, “A two dimensional quantization
algorithm for CIR-based physical layer authentication,” in Proc. IEEE
Int’l Conf. Commun. (ICC), pp. 4724–4728, Budapest, Jun. 2013.

[5] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “PHY-layer spoofing
detection with reinforcement learning in wireless networks,” IEEE Trans.
Vehicular Technology, 2016, in press.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279–292, May 1992.

[7] L. Xiao, Y. Li, G. Liu, Q. Li, and W. Zhuang, “Spoofing detection
with reinforcement learning in wireless networks,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), pp. 1–5, San Diego, CA, Dec. 2015.

[8] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “MIMO-assisted
channel-based authentication in wireless networks,” in Proc. IEEE
Information Sciences and Systems (CISS), pp. 642–646, Princeton, NJ,
Mar. 2008.

[9] Y. W. P. Hong, P. C. Lan, and C. C. J. Kuo, “Enhancing physical-
layer secrecy in multiantenna wireless systems: An overview of signal
processing approaches,” IEEE Trans. Signal Process. Mag., vol. 30,
pp. 29–40, Sep. 2013.

[10] H. Wen, S. Li, X. Zhu, and L. Zhou, “A framework of the PHY-layer
approach to defense against security threats in cognitive radio networks,”
IEEE Network, vol. 27, pp. 34–39, May 2013.

[11] P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication
over MIMO fading wiretap channels,” IEEE Trans. Wireless Commun.,
vol. 11, pp. 2564–2573, Jul. 2012.

[12] L. C. Tseng, F. T. Chien, R. Y. Chang, W. H. Chung, C. Huang,
and A. Marzouki, “Distributed channel assignment for network MIMO:
Game-theoretic formulation and stochastic learning,” Wireless Networks,
vol. 21, pp. 1211–1226, May 2015.

[13] H. Chen, S. Ta, and B. Sun, “Cooperative game approach to power allo-
cation for target tracking in distributed MIMO radar sensor networks,”
Wireless Networks, vol. 15, pp. 5423–5432, Oct. 2015.

[14] A. Mukherjee and A. L. Swindlehurst, “Optimal strategies for countering
dual-threat jamming/eavesdropping-capable adversaries in MIMO chan-
nels,” in Proc. IEEE Military Commun. Conf. (MILCOM), pp. 1695–
1700, San Jose, CA, Oct. 2010.

[15] R. Lu, X. Lin, H. Zhu, X. Liang, and X. Shen, “Becan: A bandwidth-
efficient cooperative authentication scheme for filtering injected false
data in wireless sensor networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 23, pp. 32–43, Jan. 2012.

[16] S. L. Yeo, W. Yap, J. K. Liu, and M. Henricksen, “Comments on ”anal-
ysis and improvement of a secure and efficient handover authentication
based on bilinear pairing functions”,” IEEE Commun. Lett., vol. 17,
pp. 1521–1523, Aug. 2013.


