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Abstract—By applying smart and programmable radio devices,
selfish end-users can launch smart attacks and choose multiple
types of attacks such as jamming and eavesdropping according
to the ongoing transmission of wireless networks. In this paper,
we apply prospect theory (PT) to formulate the interaction
between a smart attacker as an end-user who makes subjective
decision regarding his or her attack mode under uncertain attack
detection accuracy and a mobile user who chooses whether or
not to apply the higher-layer security mechanism to enhance
the physical (PHY)-layer security mechanism as a zero-sum
game. The Nash equilibria (NEs) of the static smart attack
game are derived and their existence conditions are provided
to study the impact of the subjectivity of smart attackers. We
also propose a defense strategy based on Q-learning, a model free
reinforcement learning technique against subjective smart attacks
in the dynamic game. Simulation results show that the proposed
defense strategy can exploit the subjective view of smart attackers
to suppress the attack motivation of end-users and improve the
utility of the mobile user.

Index Terms—Smart attacks, prospect theory, game theory,
reinforcement learning.

I. INTRODUCTION

By using smart and programmable radio devices such as

universal software radio peripherals (USRPs) or wireless open-

access research platform [1], selfish and autonomous end-

users can launch smart attacks by choosing multiple types of

attacks and controlling the radio transmission mode such as

the transmit power and frequency [2]. For example, a smart

attacker can choose to keep silent, perform spoofing attacks or

send jamming signals based on the defense strategy and the

radio channel state to the target mobile user. Compared with

traditional attackers who can perform a single type of attack, a

smart attacker is more flexible and powerful, and thus causes

more serious damage to wireless networks.

Game theory is a powerful math tool to study wireless

security, such as jamming [3] and spoofing [4]. However,

based on expected utility theory (EUT), most game theoretic

study on wireless security assumes that all the players in

the game are rational and choose actions to maximize their

expected utilities. However, as illustrated by Alais Paradox

[5], subjective decisions made by players under uncertainties

sometimes deviate from the EUT results. Therefore, prospect

theory (PT), a Nobel prize-winning theory uses the probability

weighting function and value function to model the decision

This work was supported in part by the National Science Foundation of
China (61271242, 61471308).

making process of subjective players. Prospect theory can

explain the probability evaluation distortion, and the facts that

people tend to be risk averse regarding gains and risk seeking

regarding losses [6].

In this paper, we apply prospect theory to investigate smart

attacks launched by subjective and selfish end-users under

uncertain defense performance in wireless networks. A zero-

sum smart attack game is formulated between an attacker

and a mobile user who chooses his or her defense mode,

i.e., whether to apply the higher-layer security mechanism for

better protection, or only the physical (PHY)-layer security

mechanism for less system overhead. The Nash equilibria

(NEs) of the subjective game are derived and the existing

conditions under which the NEs exist are provided to study

how to suppress the motivation of smart attacks and provide

a tradeoff between wireless security and system overhead.

We propose a defense strategy based on Q-learning, a model

free reinforcement learning technique for each mobile user to

derive its optimal defense policy according to the previous

attack modes in the dynamic smart attack game.

The main contributions of this work can be summarized as

follows:

(1) We apply prospect theory to formulate a subjective smart

attack game and provide a user-centric view of smart attacks

launched by subjective and selfish end-users with multiple

attack modes. We derive the NEs of the static smart attack

game to study the impact of the subjective view of the smart

attacker on the communication performance.

(2) We propose a Q-learning based defense strategy for a

mobile user against smart attacks in the dynamic game.

The remainder of this paper is organized as follows. We

review related work in Section II and present the system

model in Section III. We study the subjective smart attack

game in Section IV, and propose a Q-learning based defense

strategy against smart attacks in the dynamic game in Section

V. Simulation results are given in Section VI and conclusions

are drawn in Section VII.

II. RELATED WORK

An example of the game theoretic study on smart attacks

is the EUT-based mobile offloading game formulated in [2],

which provides the NEs of the game between the mobile user

and the smart attacker who can perform both jamming and

spoofing attacks. A noncooperative game between the users
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Fig. 1. Illustration of a smart attacker who can choose his or her attack mode,
such as jamming and eavesdropping, against a mobile user who applies either
the fast mode with the PHY-layer security mechanism or the safe mode with
both the PHY-layer and the higher-layer security methods to detect smart
attacks.

and the malicious nodes that can eavesdrop, jam, or use a

combination of both strategies to reduce the network capacity

was formulated in [7], and a fictitious play-based algorithm

was proposed to derive a mixed-strategy NE of the game.

An adversary that can undermine secret communications by

either eavesdropping or jamming was investigated in multiple

scenarios using game-theoretic methods [8]. The Bayesian

game model was applied to study the defensive effort under

uncertain attack type in [9]. A stochastic game was investigat-

ed in [10] to provide insights to build the secret and reliable

communication against both jamming and eavesdropping.

A PT-based wireless random access game where selfish

players adjust their transmission probabilities over a collision

channel was formulated in [11], in which the NEs under EUT

and PT were compared. Prospect theory was applied in [12]

to capture the subjective decision making by end-users in data

pricing and channel allocation in cognitive radio networks.

The PT-based jamming game presented in [13] discloses the

impact of the subjective views of the jammer and end-user

under uncertain channel power gains on the signal-to-noise-

plus-interference ratio (SINR) in cognitive radio networks.

III. SYSTEM MODEL

As illustrated in Fig. 1, a smart attacker is a selfish and

subjective end-user in the wireless network and uses USRPs

to choose his or her attack mode at time n, denoted by

xn = 0, 1, ...,K, where K is the number of attack types.

The attacker does not attack if xn = 0, and a larger value of

xn indicates more damages to the mobile user. As a concrete

example, the attacker performs eavesdropping if xn = 1, sends

jamming signals to reduce the SINR of the mobile user if

xn = 2, transmits a signal with a faked media access control

(MAC) address of the access point if xn = 3. The target

mobile user determines its defense mode denoted by yn = 0, 1.

If yn = 0, the mobile user chooses fast mode and uses the

basic PHY-layer security mechanism; and if yn = 1, it uses a

safe mode with both the PHY-layer and higher-layer security

mechanisms for stronger protection with more overhead such

as time and energy consumption.

The gain of the mobile user at defense mode y against

TABLE I
LIST OF NOTATIONS

Symbol Meaning

K Number of attack types

x = 0, 1, ...,K Attack mode

y = 0, 1 Safe/fast defense mode

Gy
x Gain of the user under attack mode x

Cy
x Security loss under attack mode x

zyx Miss detection/false alarm rate

αD/A Objective weight of the user/attacker

L
Number of non-zero detection

error rate quantization levels

P x,y
l , 0 ≤ l ≤ L

False alarm/miss detection

rate distribution

uD/A Utility of the mobile user/attacker

UEUT
D/A

Expected utility of the

mobile user/smart attacker

UPT
D/A

PT-based utility of the

mobile user/smart attacker

attack mode x, denoted by Gy
x, depends on the transmission

benefit plus the gain of successful attack detection minus the

detection cost. The security loss of the mobile user denoted

by Cy
x represents the cost to detect attacks by mistake, due to

either the false alarm or miss detection to detect attack x. Let

zyx be the detection error rate of the mobile user at mode y
against attack mode x, which is either the miss detection rate

or false alarm rate.

Prospect theory can be used to capture the subjective

decision-making process of the smart attacker and the mobile

user. According to Prelec probability weighting function [14],

the subjective probability viewed by the attacker (or mobile

user) denoted by wA (or wD) is given by

wr(p) = exp
(− (− ln p)

αr
)
, (1)

where αr ∈ (0, 1] is the objective weight of the attacker

or user, and p is the objective probability. The probability

weighting function in (1) describes how a subjective player

under-weighs the high-probability event (i.e., wr(p) < p, if p
is close to 1) and over-weighs the low probability event (i.e.,

wr(p) > p, if p is close to 0). Table I summarizes the notation

used in this paper.

IV. WIRELESS SECURITY GAME AGAINST SMART

ATTACKS

The interaction between a smart attacker and a mobile user

can be formulated as a wireless security game, denoted by G,

in which the attacker as a selfish and subjective human chooses

his or her attack mode xn = 0, 1, ...,K, and the mobile user

decides its defense mode yn = 0, 1 at time n. In the zero-sum

game, the utility of the mobile user (or the attacker) in a time

slot denoted by uD (or uA) depends on the attack mode x and

defense mode y given by

uD(x, y) = −uA(x, y) = Gy
x − zyxC

y
x , (2)



where zyx ∈ [0, 1] is the attack detection error rate, which is

assumed to follow the distribution [P x,y
l ]0≤l≤L, where P x,y

l

is the probability that zyx = l/L, and L is the non-zero

quantization levels. By definition, we have P x,y
l ≥ 0 and∑L

l=0 P
x,y
l = 1.

According to (2), the expected utilities of the mobile user

and the smart attacker averaged over the attack detection

accuracies, denoted by UEUT
D and UEUT

A respectively, are

given by

UEUT
D (x, y) = −UEUT

A (x, y) = Gy
x − Cy

x

L

L∑
l=0

lP x,y
l . (3)

If the mobile user and the attacker hold subjective views

to choose their defense and attack mode under uncertain

detection accuracy on the error rate, their decisions may

deviate from the EUT-based results. The utilities of the mobile

user and the attacker based on prospect theory, denoted by

UPT
D and UPT

A respectively, are given by

UPT
D (x, y) = Gy

x − Cy
x

L

L∑
l=0

lwD(P x,y
l ) (4)

UPT
A (x, y) = −Gy

x +
Cy

x

L

L∑
l=0

lwA(P
x,y
l ). (5)

The PT-based utility utilizes the subjective probability in (1)

to replace the objective probability of the detection error rate

probability P x,y
l in (3). A subjective player chooses his or her

policy to maximize the PT-based utility instead of the expected

utility in (3). The Nash equilibrium of the wireless security

game G, denoted by (x∗, y∗), provides the best-response of

each player, if the opponent chooses the NE strategy and is

given by definition as

UPT
D (x∗, y∗) ≥ UPT

D (x∗, y), ∀y = 0, 1 (6)

UPT
A (x∗, y∗) ≥ UPT

A (x, y∗), ∀0 ≤ x ≤ K. (7)

We evaluate the NE of the wireless security game G with

K = 2, i.e., if x = 0, the attacker does not attack, if x = 1, the

attacker eavesdrops the communication, and x = 2 represents

jamming against the user.

Theorem 1. The wireless security game G with K = 2 has
an NE (0, 0), if (8) and (9) hold.

Proof: According to (4), if (8) holds, we have

UPT
D (0, 0) = G0

0 −
C0

0

L

L∑
l=0

lwD(P 0,0
l )

≥ G1
0 −

C1
0

L

L∑
l=0

lwD(P 0,1
l ) = UPT

D (0, 1). (10)

By (5), if (9) holds, we have

UPT
A (0, 0) =

C0
0

L

L∑
l=0

lwA(P
0,0
l )−G0

0

≥ max

{
C0

1

L

L∑
l=0

lwA(P
1,0
l )−G0

1,
C0

2

L

L∑
l=0

lwA(P
2,0
l )−G0

2

}

= max
{
UPT
A (1, 0), UPT

A (2, 0)
}
. (11)

Thus, both (6) and (7) hold for (0, 0), which is an NE of the

game.

Theorem 2. The wireless security game G with K = 2 has
an NE (0, 1), if (12) and (13) hold.

Proof: Similar to that of Theorem 1.

Theorem 3. The wireless security game G with K = 2 has
an NE (2, 0), if (14) and (15) hold.

Proof: Similar to that of Theorem 1.

Theorem 4. The wireless security game G with K = 2 has
an NE (2, 0), if (16) and (17) hold.

Proof: Similar to that of Theorem 1.

Remark: If the defender holds the view that the utility of

a fast mode is larger than a safe mode, possibly due to a high

transmitting gain, a fast mode is preferred. If the smart attacker

believes that the defender is able to detect attacks accurately,

i.e., the smart attacker is afraid of being detected even it is

a small probability event, the smart attacker chooses to keep

silent.

As shown in Fig. 2, the attack motivation is suppressed if

the attacker is subjective with αA < 0.8551, while a more

objective attacker launches jamming attacks if αA > 0.8551,

with αD = 1. The same tendency occurs, and the turning point

of αA is 0.9 instead, if αD = 0.8. Therefore, the utility of the

mobile user takes a sudden decrease from 0.824 to 0.7725 at

αA = 0.8551, if αD = 1.

V. DYNAMIC SUBJECTIVE WIRELESS SECURITY GAME

In the dynamic subjective wireless security game, a smart

attacker and a mobile user repeat their interactions without

being aware of the environment model. More specifically,

the mobile user can apply the Q-learning [15] based defense

strategy to derive the optimal defense policy based on the

system state denoted by sn, which consists of the attack mode

in the last time slot.

The Q-learning algorithm, as a model-free reinforcement

learning algorithm, depends on the quality function or Q-

function denoted by Q(x, y), which is the expected discount

long-term utility if taking defense mode y in state s at time n.

The value function denoted by V (s) represents the maximum

value of the Q-function in state s. According to the iterative

Bellman equation, the mobile user updates its Q-function at



G0
0 −

C0
0

L

L∑
l=0

l exp
(
−
(
− lnP 0,0

l

)αD
)
≥ G1

0 −
C1

0

L

L∑
l=0

l exp
(
−
(
− lnP 0,1

l

)αD
)

(8)

G0
0 −

C0
0

L

L∑
l=0

l exp
(
−
(
− lnP 0,0

l

)αA
)

< min

{
G0

1 −
C0

1

L

L∑
l=0

l exp
(
−
(
− lnP 1,0

l

)αA
)
, G0

2 −
C0

2

L

L∑
l=0

l exp
(
−
(
− lnP 2,0

l

)αA
)}

(9)

G1
0 −

C0
0

L

L∑
l=0

l exp
(
−
(
− lnP 0,1

l

)αD
)
≥ G0

0 −
C0

0

L

L∑
l=0

l exp
(
−
(
− lnP 0,0

l

)αD
)

(12)

G1
0 −

C1
0

L

L∑
l=0

l exp
(
−
(
− lnP 0,1

l

)αA
)

≤ min

{
G1

1 −
C1

1

L

L∑
l=0

l exp
(
−
(
− lnP 1,1

l

)αA
)
, G1

2 −
C1

2

L

L∑
l=0

l exp
(
−
(
− lnP 2,1

l

)αA
)}

(13)

G0
2 −

C0
2

L

L∑
l=0

l exp
(
−
(
− lnP 2,0

l

)αD
)
≥ G1

2 −
C1

2

L

L∑
l=0

l exp
(
−
(
− lnP 2,1

l

)αD
)

(14)

G0
2 −

C0
2

L

L∑
l=0

l exp
(
−
(
− lnP 2,0

l

)αA
)

≤ min

{
G0

0 −
C0

0

L

L∑
l=0

l exp
(
−
(
− lnP 0,0

l

)αA
)
, G0

1 −
C0

1

L

L∑
l=0

l exp
(
−
(
− lnP 1,0

l

)αA
)}

(15)

G1
2 −

C1
2

L

L∑
l=0

l exp
(
−
(
− lnP 2,1

l

)αD
)
≥ G0

2 −
C0

2

L

L∑
l=0

l exp
(
−
(
− lnP 2,0

l

)αD
)

(16)

G1
2 −

C1
2

L

L∑
l=0

l exp
(
−
(
− lnP 2,1

l

)αA
)

≤ min

{
G1

0 −
C1

0

L

L∑
l=0

l exp
(
−
(
− lnP 0,1

l

)αA
)
, G1

1 −
C1

1

L

L∑
l=0

l exp
(
−
(
− lnP 1,1

l

)αA
)}

(17)

time n as follows:

Q (sn, yn) ←(1− γ)Q (sn, yn) (18)

+ γ
(
uD (sn, yn) + δV

(
sn+1

))
(19)

V (sn) = max
y∈{0,1}

Q (sn, yn) , (20)

where the learning factor γ ∈ (0, 1] represents the learning rate

of the mobile user, and the discount factor δ ∈ [0, 1] represents

how the mobile user views the importance of future rewards.

According to the ε-greedy strategy, the mobile user chooses

the action that maximizes its Q-function with a high prob-

ability 1 − ε, and chooses each of the other actions with a

small probability, where ε ∈ (0, 1) is a small positive value.

The Q-learning based defense strategy against smart attacks is

summarized in Algorithm 1.

VI. SIMULATION RESULTS

Simulations have been implemented to evaluate the per-

formance of the Q-learning based defense strategy against

a smart attacker with Q-learning based attack strategy to

choose from eavesdropping, jamming, spoofing and no attack,

with K = 3, C = [0.2 0.1; 0.3 0.2; 0.6 0.3; 0.9 0.4],
G = [1.7 4.5; 1.5 5.7; 1.6 5.6; 1.1 5.5], L = 10, αD = 1,

αA = 0.8, γ = 0.95, δ = 0.7 and ε = 0.9, if not specified

otherwise. As a benchmark, we evaluate a greedy defense

strategy, in which the mobile user chooses the defense mode
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Fig. 2. Performance of the static subjective wireless security game
under uncertain detection error rate at the NEs, with K = 2, G =
[0.89 0.81; 1.8 1.7; 2.19 1.4], C = [1.2 0.5; 0.5 0.3; 1.5 0.7], L = 10,
and the attacker launches eavesdropping attacks if x = 1, jamming attacks if
x = 2, and does not attack if x = 0.

Algorithm 1 Q-learning based defense strategy

Initialize γ, δ, ε, x0, Q(s, y) = 0, V (s) = 0.

For n = 1, 2, 3, ...
sn = xn−1;

Choose a defense mode yn with ε-greedy strategy;

Observe xn;

Obtain uD;

Update Q(sn, yn) via (19);

Update V (sn) via (20);

End for

to maximize its immediate utility.

As shown in Fig. 3 (a), the total attack rate of the smart

attacker decreases with time from 0.75 at the beginning to

0.12 at time 300. The proposed defense strategy exceeds
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Fig. 3. Performance of the Q-learning based defense
strategy against smart attacks in the dynamic game with
K = 3, C = [0.2 0.1; 0.3 0.2; 0.6 0.3; 0.9 0.4],
G = [1.7 4.5; 1.5 5.7; 1.6 5.6; 1.1 5.5], L = 10, αD = 1 and
αA = 0.8.

the benchmark with a lower attack rate, e.g., the attack rate

decreases by 54% after 300 time slots. Therefore, as shown in

Fig. 3 (b), the utility of the mobile user increases with time

slot, and the proposed scheme exceeds the benchmark with a

16% higher utility at time 300 after convergence, because the

Q-learning based defense strategy can make a tradeoff between

the immediate reward and future reward to achieve the optimal

policy by trial.

VII. CONCLUSION

In this paper, we have investigated the PT-based wireless

security game between a subjective smart attacker who uses

smart and programmable radio devices to choose his or her

attack mode and a mobile user who can choose the defense

mode as a tradeoff between the security level and system

overhead. The NEs of the subjective security game have been



derived to show the impacts of the subjectivity of the smart

attacker and the mobile user on the attack rate and the utility

of the mobile user. A Q-learning based defense strategy was

proposed for a mobile user to address smart attacks without

knowing the attack model and detection accuracy. Simulation

results show that the proposed defense strategy improves the

utility of the mobile user by 16%, and suppresses the attack

rate by 54%, compared with the benchmark defense strategy.
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