
Reinforcement Learning Based Mobile Offloading for
Cloud-based Malware Detection

Xiaoyue Wan∗, Geyi Sheng∗, Yanda Li∗, Liang Xiao∗, Xiaojiang Du†

∗Dept. of Communication Engineering, Xiamen University, Xiamen, China. Email: lxiao@xmu.edu.cn

†Dept. of Computer and Information Science, Temple University, Philadelphia, USA. Email: dxj@ieee.org

Abstract—Cloud-based malware detection improves the detec-
tion performance for mobile devices that offload their malware
detection tasks to security servers with much larger malware
database and powerful computational resources. In this paper,
we investigate the competition of the radio transmission band-
widths and the data sharing of the security server in the dynamic
malware detection game, in which each mobile device chooses its
offloading rate of the application traces to the security server.
As the Q-learning technique has a slow learning rate in the
game with high dimension, we have designed a mobile malware
detection based on hotbooting-Q techniques, which initiates
the quality values based on the malware detection experience.
We propose an offloading strategy based on deep Q-network
technique with a deep convolutional neural network to further
improve the detection speed, the detection accuracy, and the
utility. Preliminary simulation results verify the detection gain
of the scheme compared with the Q-learning based strategy.

Index Terms—Cloud-based malware detection, reinforcement
learning, deep-Q network, mobile offloading

I. INTRODUCTION

Mobile devices, such as smartphones, can apply machine
learning techniques such as Bayes network and random forest
classifiers in [1] to evaluate the runtime behaviors of the
applications (Apps) to detect malwares. The traces or log data
generated by the Apps must be processed in real time to avoid
zero-day attacks [2]–[5]. However, with limited battery life,
computation resources, and radio bandwidth, mobile devices
cannot always update the local malware database and process
all of the traces of the Apps in time, and thus are vulnerable to
zero-day attacks [6]–[9]. Therefore, mobile devices can resort
to the security servers at the cloud to detect malwares. As
shown in [10], by offloading some detection tasks to security
servers with larger malware database, faster processing speed,
and more powerful security services, mobile devices can
increase the battery life, improve the detection speed and
accuracy, and even address zero-day attacks.

The performance of the cloud-based malware detection
depends on the offloading. For instance, if too many App
traces are offloaded to the cloud, a mobile device can suffer
a longer detection delay because of the limited computation
resources of the server and radio network congestion. In the

This work was supported in part by National Natural Science Foundation
of China under Grant 61671396 and CCF-Venustech Hongyan Research
Initiative (2016-010).

cloud-based malware detection game as formulated in [11],
each mobile device uploads a portion of the App traces to
the cloud via the serving access points (APs) or base stations
(BSs) and utilizes the powerful computation resources and
the large database with real-time updated malware signatures
of the security server. However, the game in [11] has been
simplified, especially the channel model and the malware
detection accuracy model. Therefore, in this paper, we further
improve the game model for the mobile offloading in the
cloud-based malware detection.

As a mobile device usually has difficulty obtaining the radio
transmission and trace generation models of other mobile
devices, the mobile offloading of a mobile device in a dynamic
game can be formulated as a Markov decision process (MDP).
A reinforcement learning (RL) technique can be applied for a
mobile device to detect malware in the dynamic game. A Q-
learning based mobile offloading strategy has been proposed
in [11] to derive the optimal offloading rate of the App traces
without being aware of the channel models in dynamic radio
environments. However, the mobile offloading in [11] suffers
from a slow learning rate in a large-scale network with a
large number of feasible offloading rates, and thus suffers
serious performance degradation in the malware detection.
Therefore, in this paper, we propose a hotbooting Q-learning
based offloading strategy that exploits the malware detection
experiences to initialize the expected long-term utility values
for each state-action pair and accelerates the learning rate of
the standard Q-learning algorithm that initiates all the Q value
with zeros.

The deep Q-network (DQN) proposed in [12] exploits
a deep convolutional neural network (CNN) to accelerate
the learning speed, especially for the high-dimension cases.
Therefore, we propose a DQN-based mobile offloading strat-
egy to further enhance the malware detection performance.
Simulation results show that the algorithm can increase the
malware detection accuracy and reduce the detection delay as
compared to a Q-learning based malware detection scheme.

The main contributions of our work can be summarized as
follows:

1) We improve the game model in [11] by introducing the
malware detection accuracy function in the utility of the
mobile device.

2) A hotbooting-Q and DQN based malware detection
scheme is developed to improve detection accuracy and
speed compared to the scheme previously proposed in
[11].

The rest of this paper is organized as follows. We review
the related work in Section II and formulate the cloud-based
malware detection game in Section III. We propose the RL-
based mobile offloading algorithms for malware detections in
Section IV. We provide simulation results in Section V and
conclude the paper in Section VI.

II. RELATED WORK

The theoretic game study on mobile offloading has helped
build efficient offloading strategies. The non-cooperative of-
floading game formulated in [13] investigates the three-tier
cloud offloading architecture that adjusts the computation
offloading to the resource-limited cloudlet in order to reduce
the task execution time. A cooperative offloading strategy
proposed in [14] carries out the energy-traffic tradeoff prob-
lem to save energy and reduce the Internet data traffic of
wireless local area networks (WLAN). The decentralized
computation offloading game formulated in [15] helps develop
an offloading strategy that analyzes the offloading decision of
mobile devices with a reduced cloud computation cost. The
offloading game formulated in [16] analyzes the computation
offloading problem in cloudlet-based mobile cloud computing
via multiple wireless APs to save transmission energy and
reduce delays.

A two-dimensional anti-jamming communication scheme
based on a deep Q-network algorithm as developed in [17]
applies a deep convolution neural network to accelerate the
learning speed with a large number of frequency channels.
Reinforcement learning (RL) technique has been applied to
mobile devices to detect malwares via mobile offloading. The
mobile offloading strategy proposed in [18] applies Q-learning
technique to help mobile devices derive the optimal offloading
rates against smart attackers. An offloading algorithm based
on Q-learning is proposed in [11] for the mobile device to
update its offloading rate based on the observed state, which
consists of the previous actions of the opponents and the chan-
nel gain in dynamic environments. In [19], our previous work
in [11] is extended by deriving the Nash Equilibrium (NE) of
the malware detection game and improving the performance
with Dyna architecture. Compared to our previous work in
[11], [19], we improve the malware detection performance
with the hotbooting techniques and DQN technique.

III. CLOUD-BASED MALWARE DETECTION GAME

We consider the cloud-based malware detection of M
mobile devices as shown in Fig. 1. Without loss of generality,
mobile device i must process C

(k)
i traces generated by the

Apps at time k and chooses the proportion of the traces to
offload to the security server at the cloud via the serving
BS/AP, denoted by x

(k)
i , with 0 ≤ x

(k)
i ≤ 1 and 1 ≤ i ≤M .

More specifically, mobile device i processes all of the traces
locally to detect malware if x(k)

i = 0; it offloads all the traces

Security server

Cloud

AP/BS

bM

(k)

xM

(k)
CM

(k)
App traces

AP/BS

Locally process

(1-xi

(k)
)Ci

(k)
 App

traces

Mobile device i
bi

(k)

xi

(k)
Ci

(k)
App traces

Mobile device 1

Mobile device M

Malware detection

Fig. 1. Cloud-based malware detection game with M mobile devices, in
which mobile device i offloads x

(k)
i C

(k)
i of the App traces to a security

server via the serving AP/BS and locally processes the
(
1− x

(k)
i

)
C

(k)
i

App traces to detect malware at time k.

to the security server if x(k)
i = 1. x(k)

i C
(k)
i traces are uploaded

to the security server and the rest
(
1− x

(k)
i

)
C

(k)
i traces

are processed locally if 0 < x
(k)
i < 1. For simplicity, the

offloading rate x
(k)
i is quantized into Nx + 1 equally spaced

levels, i.e., x(k)
i ∈ { l

Nx
}0≤l≤Nx . Let x(k)−i =

[
x
(k)
j

]
1≤j ̸=i≤M

be the offloading strategies of other devices except i.

With the normalized computation resources compared to
that of the mobile devices denoted by R, the security
server applies a classification algorithm, such as the k-
means algorithm to scan the

∑M
m=1 x

(k)
m C

(k)
m App traces

sent by the M mobile devices. Mobile device i receives
x
(k)
i C

(k)
i /

∑M
m=1 x

(k)
m C

(k)
m of the computation resources to

scan the app traces at the server. Let f(x) denote the
malware detection accuracy function of the classification
algorithm applied by the server to process x traces, and
γ be the detection accuracy gain to the mobile device.
Thus f

(∑M
m=1 x

(k)
m C

(k)
m

)
represents the malware detection

accuracy of the security server, which increases with the total
size of the malware samples. Due to a limited computation
capacity of the security server, we assume f(x) = log(1+x),
whose increase rate decreases gradually.

Based on the malware detection accuracy, response speed,
and the transmission cost, the utility of mobile device i at
time k denoted by u

(k)
i according to [11] is given by:

u
(k)
i

(
x
(k)
i , x(k)−i

)
=

(
R(k)∑M

m=1 x
(k)
m C

(k)
m

− ω

b
(k)
i

)
x
(k)
i C

(k)
i

(1)

+ γ log

(
1 +

M∑
m=1

x(k)
m C(k)

m

)
.

Important symbols are summarized in Table I.

TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS

M Number of mobile devices

Ci
(k) Amount of App traces for mobile device i

at time k

bi
(k) Transmission bandwidth of device i

at time k

xi
(k) Offloading rate of device i at time k

Nx Quantized levels of offloading rates
ω Coefficient of transmission cost
γ Detection accuracy gain
R Computation resources of server
pi Computation capacity of device i

s(k)i States of mobile device i at time k
S State space
ui Utility of mobile device i
x∗
i Optimal offloading rate of device i

x∗−i Optimal strategy set of other devices except i
Qi Q function of device i
φ State sequence
D Replay memory
θ CNN filter weights
W Size of the CNN inputs

IV. MALWARE DETECTION BASED ON REINFORCEMENT
LEARNING

The repeated interactions among the M mobile devices in
their offloading for the cloud-based malware detection can
be formulated as a dynamic malware detection game. The
optimal offloading strategy of a mobile device depends on the
radio channel state and the size of generated App traces of
the mobile devices, which are challenging for a mobile device
to estimate. We present two reinforcement learning based
malware detection schemes to improve the malware detection
performance of the Q-learning based mobile offloading as
developed in [11] and accelerate the learning speed of Q-
learning in time-variant wireless networks as in the following.

A. Hotbooting Q-learning based Malware Detection

Similar to the Q-learning based malware detection scheme
in [11], the mobile device maintains a Q-function denoted
by Qi (s, x), which is the expected long-term utility of the
mobile device. The all-zero Q-value initialization in [11]
is universally valid but not efficient. Therefore, we use a
hotbooting technique that initializes the Q-value based on
the training data obtained in advance in similar scenarios to
decrease the random explorations at the beginning and thus
accelerate the learning speed in the dynamic game.

More specifically, in the dynamic game, mobile device i

receives its App traces C
(k)
i at time k and quantizes them

into Nx levels. The system state denoted by s(k)i consists of
the current radio bandwidth, and the previous offloading rates
of other devices, i.e., s(k)i =

[
x(k−1)
−i , b

(k)
i

]
∈ S, where S is

the vector space of all the possible states.

As shown in Algorithm 1, E cloud-based malware detec-
tion experiments are performed before the beginning of the
game, in which mobile device i chooses its offloading rate
x
(k)
i ∈ X with ε-greed policy, where X is the action set

consisting of the feasible offloading rates in similar scenarios.
The device observes the next state s(k+1)

i and the current
utility u

(k)
i . The mobile device i updates the Q-function at

time k, according to the iterative Bellman equation as:

Qi

(
s(k)i , x

(k)
i

)
← (1− α)Qi

(
s(k)i , x

(k)
i

)
+ α

(
ui

(
s(k)i , x

(k)
i

)
+ δVi

(
s(k+1)
i

))
(2)

Vi

(
s(k)i

)
= max

x
(k)
i ∈X

Qi

(
s(k)i , x

(k)
i

)
, (3)

where α ∈ (0, 1] is the learning rate and δ ∈ (0, 1] is the
discount factor indicating the greedy behavior of the mobile
device. The resulting Q-function denoted by Q∗ is then used
to initialize Q-value in the hotbooting-Q based algorithm.

Algorithm 1 Hotbooting preparation

1: Initialize α, δ, β,Qi = 0,Vi = 0, s1i =
[
0, b1i

]
2: for e = 1, 2, 3, ..., E do
3: Emulate a similar environment
4: Receive the traces with size Ci and quantize them into

Nx + 1 levels
5: for k = 1, 2, 3, ... do
6: Choose x

(k)
i ∈ { l

Nx
}0≤l≤Nx with ε-greed policy

7: Obtain u
(k)
i via (1)

8: Update Q∗
i

(
s(k)i , x

(k)
i

)
via (2)

9: Update V ∗
i

(
s(k)i

)
via (3)

10: end for
11: end for

As shown in Algorithm 2, the ε-greed policy is applied to
choose the “optimal” offloading rate that maximizes the Q-
function with a high probability 1− ε, and other rates with a
small probability, i.e., the offloading rate of mobile device i
is chosen according to the following:

Pr
(
x
(k)
i = x̃

)
=

1− ε, if x̃ = arg max
x
(k)
i ∈X

Qi

(
s(k+1)
i , x

(k)
i

)
ε

Nx
, otherwise.

(4)

The mobile device offloads the x
(k)
i C

(k)
i App traces to the

security server, which uses the classification algorithm such
as [3] to detect malware and sends the detection report back.
Then mobile device i observes x−i and the utility. The Q
function is updated via (2) and (3).

B. DQN-based Malware Detection

However, the convergence time required by the Q-learning
based offloading scheme increases with the number of the
action-state space, which in turn increases with the number
of mobile devices and the quantized levels of offloading
rates. Therefore, we combine the Q-learning based scheme

and deep learning to increase the detection accuracy and
reduce the detection delay in the game with “high dimension”.
More specifically, a convolutional deep neural network is used
to accelerate the convergence rate of Q-learning algorithm.
The DQN-based malware detection updates the Q-function
of mobile device i for each action-state pair given by:

Qi(s
(k)
i , x

(k)
i) = Es(k+1)

i

[
u
(k)
i

+γ max
x
(k+1)
i ∈X

Qi

(
s(k+1)
i , x

(k+1)
i |s(k)i , x

(k)
i

)]
. (5)

As shown in Fig. 2, the Q-value in (5) for each offloading
rate x is estimated using the convolutional deep neural net-
work, which consists of two convolutional (Conv) layers and
two fully connected (FC) layers. The first Conv layer includes
20 filters each with size 3 × 3 and stride 1, and the second
Conv layer has 40 filters each with size 2 × 2 and stride 1.
Both convolutional layers use the rectified linear unit (ReLU)
as the activation function. The first FC layer involves 180
rectified linear units, and the second FC layer has Nx + 1
units for the action set. According to [12], the filter weights
of the four layers in the CNN at time k are denoted by θ(k).
The CNN parameters are summarized in Table II.

TABLE II
CNN PARAMETERS IN THE MOBILE OFFLOADING

Layer Conv1 Conv2 FC1 FC1
Input 6× 6 4× 4× 20 360 180

Filter size 2× 2 2× 2 / /
Stride 1 1 / /

Filter number 20 40 180 Nx

Activation ReLU ReLU ReLU ReLU
Output 4× 4× 20 3× 3× 40 180 Nx + 1

The state sequence of mobile device i is denoted by
φ

(k)
i and consists of the current W = 11 system states,

i.e., φ
(k)
i =

(
s(k−W)
i , s(k−W−1)

i , ..., s(k)i

)
, which is then

reshaped into a 6 × 6 matrix as the input to the CNN. The

Algorithm 2 Hotbooting Q-learning based malware detection

1: Initialize α, δ, s1i =
[
0, b1i

]
,Vi = 0, and Qi = Q∗

i

2: for k = 1, 2, 3, ... do
3: Receive the traces with size C

(k)
i and quantize them

into Nx + 1 levels
4: Choose x

(k)
i via (4)

5: Send x
(k)
i C

(k)
i App traces to the security server

6: Detect malwares for the
(
1− x

(k)
i

)
C

(k)
i App traces

7: Obtain u
(k)
i via (1)

8: Observe s(k+1)
i =

[
x(k)−i , b

(k+1)
i

]
9: Update Qi

(
s(k)i , x

(k)
i

)
via (2)

10: Update Vi

(
s(k)i

)
via (3)

11: end for

outputs of the CNN are the estimated Q-value of each action,
Q
(
φ

(k)
i , x(k)i |θ(k)

)
for a given system state sequence, φ(k)

i .

The CNN filter weights θ(k) are updated at time k according
to the experience replay.

The malware detection experience of mobile device i is
denoted by d(k)

i =
(
φ

(k)
i , s(k)i , u

(k)
i ,φ

(k+1)
i

)
, and the replay

memory at time k is given by D = {d(1)
i , ...,d(k)

i }. The
experience replay randomly chooses an experience d(j)

i ∈ D,
with 1 ≤ j ≤ k. The CNN weights θ(k) are updated according
to the stochastic gradient algorithm.

The mean-squared error of the target values is minimized
over the minibatch updates, and the loss function denoted by
L is chosen as:

L
(
θ(k)

)
= E

φ
(k)
i ,x

(k)
i ,u

(k)
i ,φ

(k+1)
i

(
u
(k)
i

+ γ max
x
(k+1)
i ∈X

Q
(

s(k+1)
i , x

(k+1)
i ; θ(k−1)

)
−Q

(
s(k)i , x

(k)
i ; θ(k)

))2

. (6)

The stochastic gradient of the loss function is given by:

∇L
(
θ(k)

)
= −E

φ
(k)
i ,x

(k)
i ,u

(k)
i ,φ

(k+1)
i[(

u
(k)
i + γ max

x
(k+1)
i ∈X

Q
(

s(k+1)
i , x

(k+1)
i ; θ(k−1)

)
−Q

(
s(k)i , x

(k)
i ; θ(k)

))
∇Q

(
s(k)i , x

(k)
i ; θ(k)

)]
. (7)

This process repeats N times at each time and θ(k) are chosen
according to the randomly selected experiences d(j)

i ∈ D, as
shown in Algorithm 3.

V. SIMULATION RESULTS

Simulations were performed to evaluate the performance
of the mobile offloading schemes in the cloud-based malware
detection based on the Markov chain-based channel model,
with M = 2 mobile devices, C1 and C2 randomly chosen
from {1.55, 1.50, 1.45, 1.40}, and p1 = p2 = 0.08, ω = 0.1,
γ = 1.5, and R = 1, if not specified otherwise. The radio
bandwidths of the mobile devices were randomly chosen at
each from b1 ∈ { 17 ,

1
6 ,

1
5 ,

1
4 ,

1
3} and b2 ∈ { 1

10 ,
1
9 ,

1
8 ,

1
7 ,

1
6} in

the simulations. Let p(ik) denote the computation capacity of
mobile device i at time k. Based on the transmission delay
and the processing delay of the security server, the malware
detection delay of mobile device i at time slot k denoted by
T

(k)
i , is given by:

T
(k)
i =max

x
(k)
i C

(k)
i

b
(k)
i

+

M∑
m=1

x
(k)
m C

(k)
m

R(k)
,

(
1− x

(k)
i

)
C

(k)
i

p
(k)
i

 .

(8)

As shown in Fig. 3(a), the hotbooting Q-based malware
detection increases the detection accuracy and reduces the

Offload xi
(k)Ci App tracesMalware detection report

(1-xi
(k))Ci App traces

DQN loss and stochastic gradient descent

Evaluate ui
(k)

Choose xi
(k)

with ε-greedy

ji
(k) = (si

(k-w),si
(k-w-1), , si

(k))

Update q

Q
-v

al
ue

s

Mobile device i

ji
(j)

ji
(k)

Replay memory

Other mobile devices, security server, and the serving AP/BS

Conv 1

4×4×20

Conv 2

3×3×40
FC 1

180

FC 2

Nx+1

CNN

si
(k)

=[x-i
(k-1)

,bi
(k)

]

x-i
(k)

di
(j) = (ji

(j), si
(j), ui

(j), ji
(j+1))

Local malware

detections

Fig. 2. Illustration of the DQN-based malware detection.

Algorithm 3 Cloud-based malware detection for a mobile
device with DQN

1: Initialize θ, α, δ, x0−i = 0
2: for k = 1, 2, 3, ... do
3: Receive the traces with size C

(k)
i and quantize them

into Nx + 1 levels
4: if k ≤M then
5: Choose x

(k)
i ∈ { l

Nx
}0≤l≤Nx at random

6: else
7: φ

(k)
i =

(
s(k−W)
i , s(k−W−1)

i , · · · , s(k)i

)
8: Obtain Q

(
φ

(k)
i , x

(k)
i

)
as the CNN outputs with

φ(k) and θ(k).
9: Choose x

(k)
i via (4)

10: end if
11: Send x

(k)
i C

(k)
i App traces to the security server

12: Detect malware for the
(
1− x

(k)
i

)
C

(k)
i App traces

13: Obtain u
(k)
i via (1)

14: s
(k+1)
i =

[
x(k)
−i , b

(k+1)
i

]
15: φ

(k+1)
i =

(
s(k−W+1)
i , s(k−W)

i , ..., s(k+1)
i

)
16: D ←− D ∪ {φ(k)

i , s(k)i , u
(k)
i ,φ

(k+1)
i }

17: for j = 1, 2, ..., N do
18: Select

(
φ

(j)
i , s(j)i , u

(j)
i ,φ

(j+1)
i

)
∈ D randomly

19: Calculate L
(
θ(k)

)
via (6)

20: end for
21: Update θ(k) via (7)
22: end for

detection delay compared with the Q-learning based scheme.
For instance, the detection accuracy gain of the hotbooting-Q
algorithm is 15.1% higher than Q-learning at the 3000-th time
slot. The DQN-based malware detection further improves the
detection accuracy, which is 24.5% higher than Q-learning.

As shown in Fig. 3(b), the DQN-based malware detection
has the fastest learning rate, the highest malware detection
accuracy, the shortest detection delay, and the highest utility of
the mobile device. For example, the detection delay of DQN-
based scheme reduces by 24.6% and 35.3% at the 2000-th
time slot, respectively, compared with hotbooting-Q and Q-
learning based malware detection schemes.

In Fig. 3(c), the DQN based malware detection scheme
significantly outperforms the Q-learning based scheme with
higher utility. For instance, the DQN based strategy increases
the utility of the mobile device by 16.3%, compared with the
Q-learning scheme. Furthermore, the hotbooting Q-learning
strategy has a higher utility than the other strategies at the
beginning of the game, which is 31.0% higher than the Q-
learning based strategy.

VI. CONCLUSION

In this paper, we have formulated a cloud-based malware
detection game, in which the mobile devices compete for
the limited radio transmission resource and cooperate to
improve the malware detection accuracy of the security server.
A hotbooting-Q based mobile offloading strategy has been
proposed to improve the malware detection performance com-
pared to the Q-learning based scheme, and the performance
is further improved by the DQN-based malware detection.
As shown in the simulation results, the proposed offloading
schemes accelerate the learning speed, increase the malware
detection accuracy, reduce the detection delay, and thus
improve the utility. For instance, the DQN-based malware

0 1000 2000 3000 4000 5000 6000

Time slot

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
v
e

ra
g

e
 a

c
c
u

ra
c
y
 g

a
in

Q

Hotbooting-Q

DQN

(a) Detection accuracy gain

0 1000 2000 3000 4000 5000 6000

Time slot

7

8

9

10

11

12

13

14

15

16

17

A
v
e

ra
g

e
 d

e
te

c
ti
o

n
 d

e
la

y

Q

HotbootingQ

DQN

(b) Detection delay

0 1000 2000 3000 4000 5000 6000

Time slot

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

A
v
e

ra
g

e
 U

ti
lit

y

Q

Hotbooting-Q

DQN

(c) Utility of the mobile device

Fig. 3. Performance of the reinforcement learning based malware detection
in the dynamic game with the radio bandwidths of the two mobile devices
randomly chosen from { 1

7
, 1
6
, 1
5
, 1
4
, 1
3
} and { 1

10
, 1
9
, 1
8
, 1
7
, 1
6
}, respectively.

detection increases the detection accuracy gain and the utility
of the mobile device by 24.8% and 17.5%, respectively, after
3500 time slots compared with the Q-learning based strategy.

REFERENCES

[1] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, no. 1, pp. 343–357, Jan. 2016.

[2] A. S. Shamili, C. Bauckhage, and T. Alpcan, “Malware detection on
mobile devices using distributed machine learning,” in Proc. Int’l Conf.
Pattern Recognition, pp. 4348–4351, Istanbul, Turkey, Aug. 2010.

[3] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for android,” in Proc. ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, pp. 15–
26, Chicago, Oct. 2011.

[4] S. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android
malware detection approach using Bayesian classification,” in Proc.
IEEE Int’l Conf. Advanced Information Networking and Applications
(AINA), pp. 121–128, Barcelona, Spain, Mar. 2013.

[5] S. Liang and X. Du, “Permission-combination-based scheme for an-
droid mobile malware detection,” in IEEE Int’l Conf. Commun. (ICC),
pp. 2301–2306, Sydney, NSW, Australia, Jun. 2014.

[6] X. Du, Y. Xiao, M. Guizani, and H. H. Chen, “An effective key
management scheme for heterogeneous sensor networks,” Ad Hoc
Networks, vol. 5, no. 1, pp. 24–34, Jan. 2007.

[7] X. Du and H. H. Chen, “Security in wireless sensor networks,” IEEE
Wireless Commun., vol. 15, no. 4, pp. 60–66, Aug. 2008.

[8] Y. Xiao, H. H. Chen, X. Du, and M. Guizani, “Stream-based cipher
feedback mode in wireless error channel,” IEEE Tran. Wireless Com-
mun., vol. 8, no. 2, pp. 622–626, Feb. 2009.

[9] X. Du, M. Guizani, Y. Xiao, and H. H. Chen, “A routing-driven elliptic
curve cryptography based key management scheme for heterogeneous
sensor networks,” IEEE Trans. Wireless Commun., vol. 8, no. 3,
pp. 1223–1229, Mar. 2009.

[10] A. Houmansadr, S. A. Zonouz, and R. Berthier, “A cloud-based
intrusion detection and response system for mobile phones,” in Proc.
IEEE Int’l Conf. Dependable Systems and Networks Workshop, pp. 31
– 32, Hong Kong, China, Jun. 2011.

[11] Y. Li, J. Liu, Q. Li, and L. Xiao, “Mobile cloud offloading for malware
detections with learning,” in Proc. IEEE Int’l Conf. Computer Commun.
(INFOCOM) BigSecurity Wksp., pp. 226–230, Hongkong, China, Apr.
2015.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Jan. 2015.

[13] V. Cardellini, V. D. N. Personé, V. D. Valerio, et al., “A game-
theoretic approach to computation offloading in mobile cloud comput-
ing,” Springer Mathematical Programming, vol. 157, no. 2, pp. 421–
449, Jun. 2016.

[14] J. Song, Y. Cui, M. Li, and J. Qiu, “Energy-traffic tradeoff cooperative
offloading for mobile cloud computing,” in Quality of Service, pp. 284–
289, Hong Kong, China, May 2014.

[15] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel and Distributed Systems, vol. 26,
no. 4, pp. 974–983, Apr. 2015.

[16] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,” in
Proc. ACM Int’l Conf. Modeling, Analysis and Simulation of Wireless
and Mobile Systems, pp. 271–278, Cancun, Mexico, Nov. 2015.

[17] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming
communication based on deep reinforcement learning,” in Proc. IEEE
Int’l Conf. Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, Mar. 2017.

[18] L. Xiao, C. Xie, T. Chen, and H. Dai, “A mobile offloading game
against smart attacks,” IEEE Access, vol. 4, pp. 2281–2291, May 2016.

[19] L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detetction
game for mobile device with offloading,” IEEE Tran. Mobile Comput-
ing, in press.

