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Abstract—Internet of Things (IoTs) have to address jammer-
s, with goal to interrupt the communication of the energy-
constrained IoT devices and sometimes even cause denial-of-
service attacks. In this paper, we propose a deep reinforcement
learning based power control scheme for IoT devices to improve
the transmission efficiency and save energy. This scheme depends
on the current IoT transmission status and the jamming strength
and applies deep Q-network (DQN) to determine the transmit
power without being aware of the IoT topology and the jamming
model. This scheme is implemented on the universal software
radio peripherals for the anti-jamming communication perfor-
mance evaluation. Experimental results show that this scheme
improves the signal-to-interference-plus-noise of the IoT signals
compared with the benchmark Q-learning based power control
scheme against jamming.

Index Terms—Jamming, DQN, universal software radio pe-
ripherals, IoT, power control.

I. INTRODUCTION

The Internet of Things (IoT) has provided the various
applications with the interconnected devices such as sensors,
actuators, and mobile phones, which communicate with each
other to exchange data and carry out tasks [1]. The security
issues of the IoT have been critical to ensure the quality of
the communication. However, the IoT is seriously threatened
by various attacks, especially the jamming attack [1]–[3], due
to the heterogeneous and large-scale nature and the limited
energy resource. The jamming attack can be easily launched
by the radio devices to interrupt the legitimate communication
and even cause the denial-of-service attack [4]–[6].

Anti-jamming techniques such as power control have been
studied in the wireless communication [7]. For example, the
power control schemes proposed in [8] estimate the channel
conditions and adjust the transmit power to override the
jamming signal and thus improve the communication quality.
However, the IoT device has to avoid high energy consumption
regarding its limited battery capacity and transmit power.
Moreover, the power control strategy depends on the channel
conditions and the jamming model including the jamming
channel and the jamming power, which are difficult to estimate
accurately with the dynamic topology of the IoT and the fast-
varying wireless environments [9]–[11].
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In this paper, we investigate the anti-jamming IoT com-
munication against the jammer who can observe the com-
munication state of the IoT devices and accordingly choose
its jamming strategy. The transmit power control policy of
the IoT device will impact on the future jamming strategy,
thus the interactions between the device and the jammer can
be formulated as a finite Markov decision process (MDP).
Therefore, reinforcement learning (RL) techniques such as Q-
learning can be applied for the IoT devices to achieve the
optimal power control strategy without being aware of the
channel variation information and the jamming model.

However, the dynamic IoT topology usually results in the
large-scale state space for the RL-based power control schemes
and thus cause the learning performance degradation, i.e.
the learning speed is significantly decreased. Specifically, the
widely used model-free algorithm, Q-learning will suffer a
long convergence time to achieve the optimal strategy with
enormous feasible observation states and even fail to converge
[12]. Therefore, we propose a deep Q-network (DQN) based
power control scheme for the IoT device, which uses the deep
neural network such as convolutional network to accelerate the
learning speed.

We implement the DQN-based power control scheme over
the universal software radio peripherals (USRPs), which is
programmable using GNURadio platform to provide the signal
processing and the transmission module. The details of each
transmission and computation module are presented in the
following. The previous works mainly focus on the theoretical
analysis and simulation experiment over personal computer. In
contrast, we perform the experiments in the realistic scenarios
and demonstrate the effectiveness of the proposed scheme
under the hardware constraint. The experiment results show
that the proposed DQN-based power control strategy improves
the communication efficiency compared with the Q-learning
based strategy.

The remainder of this paper is organized as follows. We
review related work in Section II, and present the anti-jamming
communication game in Section III. We propose the DQN-
based power control strategy in Section IV. We provide the
experiments results in Section V, and draw conclusions in
Section VI.



II. RELATED WORK

To resist interference from jammers in wireless radio com-
munication, some useful techniques can be applied. For in-
stance, spread spectrum techniques such as frequency hopping
and direct-sequence spread spectrum can be applied to ad-
dress jamming attacks [13]–[17], anti-jamming power control
techniques [18], [19] are useful in addressing jamming, and
multiple-input multiple-output (MIMO) techniques are also
applied to improve the performance [20].

Reinforcement learning algorithm makes it feasible that
an agent gradually achieves an optimal policy via trials in
Markov decision process over time or steps. It is important
and useful in decision-making. The Q-learning is applied in
channel allocation scheme in [21] to solve for an optimal
channel access strategy in the cognitive radio networks. The
multi-agent reinforcement learning is applied in [22] to find
the optimal control channel allocation strategy to combat
the control channel jamming. The multi-agent reinforcement
learning is used in [23] in the power control strategy to
achieve the higher learning speed in the energy harvesting
communication system to deal with intelligent adversaries.

III. ANTI-JAMMING COMMUNICATION SYSTEM MODEL

In this paper, we investigate the anti-jamming IoT communi-
cation against the jammer who can observe the communication
state of the IoT devices and accordingly choose its jamming
strategy. At time slot k, the transmitter sends messages to the
receiver at the transmit power denoted by x(k) ∈ [0, P ], where
P is the maximum power of devices. The channel gain from
the transmitter to the receiver is denoted by h

(k)
t . The cost of

the energy loss of transmitting messages is denoted by C
(k)
t .

The utility of the transmitter at time slot k is denoted by u
(k)
t .

At time slot k, the jammer tries to inject jamming signals
at the jamming power denoted by y(k) ∈ [0, P ] to block the
ongoing local transmission, resulting in low SINR and a packet
loss at the receiver, where P is the maximum power of jammer.
The channel gain from the jammer to the receiver is denoted
by h

(k)
j . The cost of the energy loss of injecting jamming

signals is denoted by C
(k)
j . The utility of the jammer at time

slot k is denoted by u
(k)
j .

The noise power at the receiver is denoted by n(k). SINR(k)

denotes the SINR from transmitter to receiver, which is
influenced by channel quality and interference of jammer. We
can define SINR basing on the signal power, channel gain and
the noise power as the following formula,

SINR(k) =
htx

(k)

hjy(k) + n(k)
. (1)

The utility of the transmitter and the jammer can be defined
based on SINR and the cost of energy loss, as the following
formula,

u
(k)
t = SINR(k) − C

(k)
t x(k). (2)

u
(k)
j = −SINR(k) − C

(k)
j y(k). (3)

TABLE I: List of Notations

Symbol Meaning
x(k) Transmit power at time slot k
y(k) Jamming power
h
(k)
t Channel power gain of the TX-RX link

h
(k)
j Channel power gain of the jammer

C
(k)
t Energy cost of the transmitter

C
(k)
j Energy cost of the jammer

SINR(k) SINR of the signal
n(k) Noise power
u
(k)
t Utility of the transmitter

u
(k)
j Utility of the jammer

s(k) System state
a(k) Transmit power
φ(k) Input of the CNN
W Size of the state-action pairs in φ(k)

γ Discount factor
θ(k) Parameters of the CNN

At each time slot, the jammer chooses the jamming power
with the greedy strategy. The jammer observes the SINR last
time, that is, SINR(k−1), then chooses the jamming power
which can reduce the SINR and maximize the utility u

(k)
j . At

the same time, the transmitter chooses the transmit power by
DQN algorithm to improve SINR and reduce energy loss.

The summary of notations used in this paper is listed in
Table I.

IV. DQN-BASED ANTI-JAMMING COMMUNICATION
SYSTEM

The optimal transmit power at the IoT devices relies on
observing the topology structure, the channel model and the
jamming model, which are complex and difficult to estimate.
Enormous state space results in ‘curse of dimensionality’ at
normal RL algorithms such as Q-learning. Therefore, we apply
a power control scheme based on the DQN algorithm for the
IoT devices to accelerate the learning speed and address the
anti-jamming problem more efficiently and derive the optimal
transmit power control scheme without being aware of the
channel model and the jamming model.

As is shown in Fig. 1, we implement this DQN-based
anti-jamming power control system over USRPs. Fig. 1(a)
shows the transmitter on USRP. The transmit data packets
are prepared and the transmitter chooses and sets the transmit
power x(k) based on DQN algorithm. The data packets are
then encoded and modulated by encoder and modulator, and
submitted to the IF processing and ADC module, and then
transmitted by RF front end of the transmitter with power
x(k).

Fig. 1(b) shows the receiver on USRP. The data packets
and the jamming signals are received by RF front end of the
receiver, via ADC module and IF processing, and submitted
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Fig. 1: Illustration of the DQN-based IoT power control in the
USRP based testbed.

to decoder and demodulator. After that, the SINR and utility
are obtained and feed back to the transmitter. The transmitter
is able to choose its strategy basing on the feedback next time.

The system state is denoted by s(k) and the action is denoted
by a(k) at time slot k. The transmitter judges the current
state by observing the feedback from the environment and
determines its action.

As is shown in Fig. 1(a), a convolutional neural network
(CNN) is required in DQN. System state s(k) at time slot k
is the input in CNN. In our model, we set SINR(k−1) at time
slot k − 1 as the current system state s(k). In order to give
more information to the input to speed learning rate up and
derive a better policy, the input dimension must be increased.
We expand state into state-action pairs sequence, denoted by
φ(k) at time slot k, which consists of the current state and the
last W state-action pairs, i.e.

φ(k) = (s(k−W ), a(k−W ), ..., s(k−1), a(k−1), s(k)). (4)

Our CNN consists of two convolutional layers and two
fully connected (FC) layers. The first convolutional layer
includes 20 filters each with length 3 and stride 1. The
second convolutional layer has 40 filters each with length
2 and stride 1. There is activation function, rectified linear
unit (ReLU), following both convolutional layers. The first

Algorithm 1 DQN based power control system.

1: Initialize θ, γ, W , x(0), y(0);
2: Obtain SINR(0) via Eq. (1) as s(1);
3: for k = 1, 2, 3, ... do
4: if k 6 W then
5: Set transmit power x(k) ∈ {0, 1, 2, ..., N};
6: else
7: Set φ(k) via Eq. (4) as input of CNN;
8: Get output of CNN Q(φ(k), x(k), θ(k)) as the esti-

mated Q values;
9: Choose transmit power x(k) with ϵ-greedy strategy;

10: end if
11: Send data packets with power x(k);
12: Obtain SINR(k) via Eq. (1) as s(k+1);
13: Evaluate the utility of the transmitter u(k)

t via Eq. (2);
14: Update θ(k) by minimize Eq. (5);
15: end for

FC layer involves 180 linear units and the second FC layer
has N + 1 units, which represent the action set. The weights
of the four layers in the CNN at time slot k are denoted by
θ(k).

At each step, the current system state is input into the
CNN and then the output from CNN is obtained, i.e. an
array of the estimated Q values for each action, denoted by
Q(φ(k), x, θ(k)).

Notice that the one who applies DQN algorithm is the
devices. The devices have decided its action, that is, transmit
power at this time slot. Executing the chosen action, the SINR
at this time slot will be measured and calculated at the end of
this time slot.

The mean-squared error between estimated Q value and
excepted Q value, i.e. the loss function chosen, is minimized
with minibatch updates as following

L(θ(k)) = (Q′ −Q(φ(k), x, θ(k)))2. (5)

where Q′ is the excepted Q function given by

Q′ = SINR(k) + γmax
x′

Q(φ(k+1), x′, θ(k)). (6)

The second term on the right-hand-side of Eq. (6) means
that, when next state is input, estimated Q value for each action
x is calculated and the highest returned, with corresponding
action x. After that, the parameters θ(k) of the CNN are
updated and optimized at the end of each time slot by
stochastic gradient descent algorithm.

V. EXPERIMENT RESULTS

We implement this anti-jamming system over USRPs to
evaluate the performance of it. As is shown in Fig. 2. Our
devices consist of several laptops with Ubuntu14.04 and GNU
Radio, three USRP boards with two antennas at each USRP
board, a transmitting antenna TX and a receiving antenna



Fig. 2: Settings in the experiments

RX. The message transmitter, receiver and the jammer are
respectively set on one USRP.

The reactive jammer calculates its utility to choose the
jamming power based on the last transmit power of the trans-
mitter. At each time slot, the jammer observes SINR(k−1),
then chooses the jamming power which can maximize u

(k)
j

with the greedy strategy.At each time slot, the transmitter
chooses and sets the transmit power and sends data packets on
the radio channel. As a typical example, the transmit power is
discretized from 0 dBm to 15 dBm out of N = 50, with cost
of energy loss Ct = Cj = 1 and discount factor γ = 0.5.
Q-learning algorithm and DQN algorithm are respectively
implemented at this system.

The performances of the anti-jamming system based on
different power control algorithm is shown in Fig. 3. The
DQN-based power control scheme outperforms that on Q-
learning, with higher utility and faster learning speed. For
instance, the SINR increases from 19.5 at the beginning to
29.6 by 51.8% at approximate time slot 240 at the Q-learning
system, while the SINR increases from 18.8 at the beginning
to 34.1 by 81.4% at approximate time slot 210 at the DQN-
based system, which is 15.2% higher than that on Q-learning
with faster convergence rate. The utility of devices increases
from 18.5 at the beginning to 28.8 and at approximate time
slot 240 at the Q-learning system, while the utility increases
from 17.2 at the beginning to 33.9 at approximate time slot
210 at the DQN-based system, which is 17.7% higher than
the Q-learning-based scheme. The utility of jammer decreases
from -18.1 at the beginning to -29.8 at the Q-learning system,
while the utility decreases from -17.6 at the beginning to -35.2
at the DQN-based system, which is 18.1% lower than that on
Q-learning.

VI. CONCLUSION

In this paper, we have presented an anti-jamming IoT power
control scheme against jamming, which applied a DQN to
accelerate the learning speed for the case with a large number
of SINR quantization levels and jamming levels. Experiments
based on the test bed using USRPs have been performed to
evaluate the anti-jamming transmission performance, showing
that this scheme can improve the average SINR of the IoT sig-
nals against jamming compared with the standard Q-learning-
based strategy. For instance, this scheme increases the SINR
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Fig. 3: Performances of the IoT power control against reactive
jamming in an experiment as shown in Fig. 2, with N = 50,
Ct = Cj = 1 and γ = 0.5.



of the signals by 51.8% and the utility the IoT devices by
81.4% after 240 time slots, respectively, which are 15.2% and
17.7% higher than the benchmark scheme.
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