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Abstract— We investigate the use of an auxiliary network of
sensors to locate mobiles in a cellular system, based on the
received signal strength at the sensor receivers from a mobile’s
transmission. The investigation uses a generic path loss model
incorporating distance effects and spatially correlated shadow
fading. We describe four simple localization schemes and show
that they all meet E-911 requirements in most environments.
Performance can be further improved by implementing the
MMSE algorithm, which ideally reaches the Cramer-Rao Bound.
We compare the MMSE algorithm and the four simple schemes
when the model parameters are estimated via inter-sensor
measurements.

Index Terms— Cellular systems, localization, mobile terminals,
path-loss models, sensor networks.

I. INTRODUCTION

OVER the past few decades, localization technology has
been investigated extensively and numerous applications

have been proposed in various wireless systems [1]–[8]. In
cellular systems, the location information of mobile terminals
(MTs) is collected to improve radio resource management,
mobility management, and overall cellular system design
[1]. Also, the Federal Communications Commission (FCC)
initially required all wireless carriers to report the location of
E-911 callers with an accuracy of 125 m in at least 67% of
cases [9]. This rule was later adjusted to 100 m or less in 67%
of all cases, and 300 m or less in 90% of all cases [10].

Here, we investigate the localization of MTs using a net-
work of N spatially dispersed sensors, where the sensors
communicate with each other and with the cellular system.
A key benefit of this approach is that it provides round-
the-clock measurements from many low-cost devices. Each
sensor has an identifying code and a fixed and known location,
and it measures the received signal power from transmitting
MTs to estimate their locations. Such measurements can also
determine the coverage pattern, which can help improve the
management of the cellular system [11].

The location of an MT can be determined in various ways
[2]. Our work is based on the received signal strength (RSS) or
power measurement approach, which is relatively inexpensive
and simple to implement in hardware [4]. In the system we
consider, it is very likely that some sensors will be located
very close to the MT, so that simple-yet-accurate localization
schemes should be possible. Simulation results verify this
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expectation, as we will show. Specifically, for a cell of radius
1000 m, N = 200 sensors (density of 1 sensor per 15,708
m2) are sufficient to satisfy the error requirement of E-911.

After a brief overview of related work in Section II, we
present the system model in Section III, including a path
loss model that incorporates distance effects and spatially
correlated shadow fading. We describe the sensor-assisted
localization system in Section IV, and present its performance
in Section V. In Section VI, we discuss the Cramer-Rao Bound
(CRB), the MMSE estimator, and model parameter estimation
based on inter-sensor measurements.

II. RELATED WORK

Related work in the area of user localization based on
received power falls roughly into four categories: (1) In-
building infrared networks, (2) cellular networks based on
RF, (3) global positioning system (GPS) and (4) sensor
networks [3], [5]–[8]. Among them, the MinMax algorithm
was proposed for N -hop sensor networks to obtain an initial
coarse estimate of sensor locations [6]. The least squares (LS)
algorithm linearizes the triangular formulas of the distance
between anchors (i.e., the sensors with known locations) and
the unknown sensor, and then uses the standard least-squares
approach to solve the linearized equations [7]. Similarly, in
the Euclidean algorithm, up to two possible sensor positions
are obtained by strictly solving the triangular formulas of
two anchors, and then the position of the unknown sensor
is determined by the vote of the third anchor if necessary [8].
It often flags the case with large distance estimation error,
through a failure to achieve intersecting circles. Such a flag
can signal the location algorithm to switch to a more robust
scheme, as we will demonstrate in Section IV.

III. PATH LOSS MODEL

Similar to the case treated in [11], suppose each cell has
one MT and N sensors. (We discuss later the case of multiple
MTs.) Each of the sensors measures the received power of the
uplink pilot signal Pi, i = 1, · · · , N . We assume that the pilot
power measurement is over a bandwidth sufficiently wide (5
MHz or more) that multipath fading is mostly averaged out.
Thus, the measurement of Pi, combined with knowledge of
the uplink pilot transmit power and the antenna gains, permits
the network to estimate PLi, the path loss between the MT
and sensor i.

For our purposes, it is safe to assume that the antennas
are omni-directional and the pilot powers equal, so that the
variation of received power over the sensors precisely tracks
the variation of PL, i.e., Pi = C −PLi, where C is the same
for (and known by) all sensors. Assuming a generic model
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along the lines of [12], the path loss from the MT to the i−th
sensor is

PLi[dB] = A + 10γ log10(di/d0) + si; i = 1, · · · , N,
(1)

where di is the distance from the MT to sensor i, si is
the shadow fading (in dB) along that path, and d0 is a
reference distance. The intercept A and path loss exponent γ
are generally unknown and variable from cell to cell. Typically
[12], A is close to 20 log10(4πd0/λ), where λ is wavelength
and d0 is specified to be 100 m 1; γ ranges from 3 to 6; si is
a Gaussian process over space with zero mean and standard
deviation σ; and σ is also variable from cell to cell, ranging
from 3 dB to 10 dB [13]. We assume, for study purposes, that
the autocorrelation of the spatial process si depends only on
the separation distance, i.e.,

E[sisj ] = σ2e−dij/Xc (2)

where dij is the distance from sensor i to sensor j; and Xc,
the shadow fading correlation distance, can range from several
to many tens of meters [13].

IV. SENSOR-ASSISTED LOCALIZATION SYSTEM

Power-based localization in a sensor-assisted cellular system
can be implemented in two steps:
Step 1: The system collects the received signal power informa-
tion Pi from N sensors. We denote the sensor locations as L1,
· · · , Li, · · · ,LN , where Li = [xi, yi]T , i = 1, 2, · · · , N . The
received power and path loss associated with location Li are
Pi and PLi, respectively. For convenience, i is ordered such
that Pi decreases with i (P1 ≥ P2 ≥ · · · ≥ PN ). For most
of the schemes considered here, the distances di is estimated
from PLi, assuming that the model parameters A and γ are
known and the shadow-fading components si are unknown.
Estimating di is possible by assuming that si = 0, leading to

d̂i = d0 · 10(PLi−A)/(10γ) (3)

The estimation error for di results from the existence of
unknown shadow fading and any errors in estimating A and
γ.
Step 2: To estimate the location of the MT, θ = [θ1, θ2]T , we
select the first n (∈ {1, · · · , N}) data values, i.e., the data
collected by sensors with the n strongest powers. Compared
with localization algorithms using data from all N sensors [3],
this not only simplifies the implementation and saves energy,
but also improves the estimate accuracy, as we will discuss in
Section V.

The postulated sensor-based system can use existing local-
ization algorithms, such as MinMax [6] and Least Squares [7],
but we also consider two new schemes (Weighted Average and
Modified Euclidean), as follows:

Weighted Average (WtdAv) Method: This method requires
no a priori information on A or γ, and does not need to
estimate the distances between the MT and the sensors. The

1Since A is common to all path loss terms, we simplify matters, with no
loss in generality, by assuming A = 0 dB throughout this study.

location of the MT is assumed to be an average of the
locations of the nearby sensors, weighted by their received
signal powers, i.e., θ̂ = [

∑n
i=1 xiwi,

∑n
i=1 yiwi]T , where

wi = Pi/
∑n

j=1 Pj .
Modified Euclidean (ModEuc) Method: This method is an

extension of the Euclidean algorithm [8], wherein WtdAv with
n ≥ 3 is invoked if and only if the Euclidean algorithm
fails to produce intersecting circles. We will see that ModEuc
provides a good combination of accuracy and robustness to
conditions; and obviously, it has better coverage than the
Euclidean algorithm, especially under heavy shadow fading.
For example, with γ = 3.8, σs = 8 dB, Xc = 80 m, and
N = 200 sensors in an outdoor cell with a radius of 1000
m, the Euclidean algorithm fails in 63% of the cases where
ModEuc succeeds.

Our aim is to examine the four algorithms, MinMax, Least
Squares (LS), WtdAv and ModEuc in the context of a network
of N power-measuring sensors of known locations. We ini-
tially assume that path loss parameters A and γ are perfectly
known, and we will compare their performances under that
condition (Section V). Then we will showcase the minimum
mean-square error (MMSE) estimator, which achieves the
theoretical lower bound (Cramer Rao Bound (CRB)) under
ideal conditions, and compare it with the four simple schemes
(VI). In that comparison, we will also account for imperfect
knowledge of the model parameters.

V. SIMULATIONS, RESULTS AND DISCUSSION

A. Simulation Approach

We developed a simulation platform for determining the
error statistics for different propagation conditions and system
parameters. If not specified otherwise, the numerical results
we present will be for the specific case of an outdoor cell,
with a cell radius of 1 km; a reference distance d0 = 100 m;
a frequency of 2.4 GHz; a path loss exponent, γ=3.8; and a
correlation distance Xc = 80 m.

In the simulations, we first generate a total of Nsh “scenar-
ios", a scenario consisting of a randomly chosen MT location
and a spatial distribution of the dB shadow fading component,
s, as characterized by (2). For each scenario, we generated M
random placements of N sensors, with M being a program
variable. We chose Nsh = 50 and M = 300, for a total
of 15,000 trials. In each trial, we determined the location
estimate for each of the methods, compared it with the true MT
location, and thus determined the location error, ε, in meters.
From the 15,000 values of ε for each method, we obtained a
cumulative distribution function (CDF), determined the 67th
percentile value, and also computed the RMS value.

B. Numerical Results

As noted, the localization schemes select n out of N data
values, i.e., the data collected by those sensors with the n
strongest powers. Fig. 1 presents the impact of n on the 67th
percentile and the RMS estimation error, with 3 ≤ n ≤ 32 and
the parameters indicated in the caption. We see that WtdAv is
not sensitive to n, because the additional data brought in by a
larger n are weighted by smaller values (Pi/

∑
j Pj). ModEuc

is also insensitive to n, since the Euclidean method itself is
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Fig. 1. Error metrics vs. n, the number of strongest-power sensors used in the algorithm (γ = 3.8, σ = 8 dB, Xc = 80 m, N = 200, outdoor cell with a
radius of 1000 m). Note the rough similarity of the RMS error to the 67% error in most cases.

based solely on the three nearest sensors; thus, n > 3 only
applies when WtdAv is brought in.

MinMax tends to be less accurate as n rises. From Eq.
(1) and Eq. (3) we see that the absolute estimation error of
the distance between MT and the i-th sensor, |d̂i − di| =
di|10si/(10γ)−1|, is approximately proportional to the distance
di itself. Thus the distance estimate from a farther sensor is
usually less accurate, especially in these sparsely distributed
sensor networks. Since MinMax does not weight the mea-
surements, its performance degrades when taking into account
more “bad" data. Similar comments apply to the LS scheme
as well. The choice of n in that case is a bit complicated:
n = 4 and 5 yield the lowest 67th percentile, while n = 6
yields the lowest RMS error. The large RMS errors seen for
n < 5 arise from the occasional flip ambiguity (illustrated
in [14]), where the sensors line up and cause the estimated
and true MT location to be approximately symmetric about
the line of sensors. We can assume that a practical algorithm
would avoid these cases, but to simplify our study (and since
the 67th percentiles are hardly different for n = 4, 5 and 6),
we will assume n = 6 for the LS method.

Now we consider the selection of N , the number of sensors
in each cell. Fig. 2 shows that the estimation error decreases
with N for each scheme. Under large shadow fading (σ = 8
dB), LS is the worst algorithm and all other three schemes
satisfy, for N > 150, the FCC requirement that the estimation
error be less than 100 m for 67% of the cases. For the case with
negligible shadow fading (σ = 0.1 dB), all schemes satisfy the
FCC requirement using very small N . Note that the LS and
ModEuc schemes yield almost zero error with small shadow
fading (assuming A and γ are precisely known).

From Fig. 3 we can see that the LS scheme is the most sen-
sitive to σ among the four schemes, followed by the ModEuc
scheme. However, the latter has smaller 67th percentile errors
than others, as σ ranges from 0 to 8 dB. The performance of
the WtdAv scheme is similar to that of MinMax, although the
former does not require any a priori information about A and
γ. Besides, we can see that N = 200 is large enough (for a

1-km radius) to find a scheme satisfying the FCC requirement
over a wide range of σ. In an earlier study [11], we found
that 200 sensors also enable the system to obtain accurate
estimates of outage probability.

Simulation results not presented here show that the esti-
mation error of the algorithms decreases with increasing γ.
For example, the 67th percentile errors of MinMax are 90
m and 140 m, respectively, for γ = 3.8 and 3, with σ = 8
dB, Xc = 80 m, and N = 200. This is because the distance
estimate is less accurate with a smaller γ for the same shadow
fading value.

VI. LOWER BOUNDS AND PARAMETER ESTIMATION

To better assess the above results, we first invoke the CRB,
which is the theoretical lower limit on the variance of an
unbiased estimator. We then describe the MMSE estimator,
which meets the CRB if the path loss model parameters are
perfectly known; and we show how these parameters can be
estimated using the N deployed sensors. Finally, we compare
RMS errors corresponding to the CRB, the MMSE estimator
and the four simple schemes when the parameter estimates
are imperfect. We do this for a situation specifically devised
to simplify analysis, i.e., for spatially white shadow fading
(Xc = 0). To simplify computations as well, we further
assume that N and the cell radius are reduced (N = 20 and
the radius is 316 m), thereby keeping sensor density the same
while significantly reducing the running time.

A. Cramer-Rao Bound (CRB)

The CRB is the lower bound for the variance of any unbi-
ased estimator, and provides a benchmark for determining how
far practical location algorithms are from ideal [15]. Following
the derivation in [2], we compute the Fisher information
matrix, F, in Eq. (4), for the estimator of θ with observation
z = [PL1, PL2, · · · , PLN ]T .
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Fig. 2. 67% error vs. N , the number of sensors in a a cell (γ = 3.8, Xc = 80 m, outdoor cell with a radius of 1000 m).
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Fig. 3. 67% error vs. σ (N = 200, γ = 3.8, Xc = 80 m, outdoor cell
with a radius of 1000 m).

For any unbiased estimator based on power measurements,
we have

E{||θ − θ̂||2} ≥ CRB = (F−1)1,1 + (F−1)2,2 (5)

Note that the MT and sensor locations (θ, L1, · · · , LN ) are
viewed here as random variables, instead of as nonrandom
parameters as in [2]. This is because most existing estimators,
including the bias-corrected ML estimator in [16], are usually
biased for a specific asymmetric MT-sensors topology. Mean-
while, most estimates of θ become unbiased, if averaged over
all possible topologies, because of the symmetry. Assuming
that the MT and N sensors are uniformly distributed in the
cell, we can use (4) to numerically calculate the CRB. If an
efficient estimate exists, the CRB can be approached by the

MMSE estimator [15], discussed next.

B. MMSE Estimator

For the channel model in Section III, the minimum-mean-
square error (MMSE) estimate of θ with observations of z
and known sensor locations is given by Eqs. (6) and (7) (next
page), where p(θ) has a value equal to the inverse of the cell
area if θ is inside the cell, and is zero otherwise. Implemen-
tation of the MMSE algorithm clearly requires knowledge of
the channel model parameters, A, γ, and σ. We now discuss
their estimation from finite measurements.

C. Estimating the Model Parameters

Among the four schemes studied in Section IV, only WtdAv
can operate without knowledge of the model parameters,
(1), which are known to vary from cell to cell. The other
three rely on knowledge of A and γ, and Figs. 1-3 are
based on perfect information. The MMSE estimator, moreover,
requires knowledge of σ as well. It also requires an inordinate
amount of computation, (6), which is not readily accomplished
in a real-time operation like localization. Quantifying this
computational problem is beyond the scope of this paper,
but we can address the method, and impact, of parameter
estimation.

We assume that the N sensors in a cell measure the N(N−
1)/2 path losses among them. The sensor network knows their
locations, and thus the distance between each node pair. A
scatter plot of path loss vs. distance, with N(N −1)/2 points,
can therefore be constructed; and (A, γ, σ) can be estimated
via least-squares fitting using (1). This was done for the case
of the smaller cell with 20 sensors and spatially white shadow
fading described above, and the results were used to compare
RMS errors for various cases.
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θ̂i =
∫ ∞

−∞
θip(θi|z)dθi =

∫ ∞
−∞

∫ ∞
−∞ θip(z|θ)p(θ)dθ1dθ2∫ ∞

−∞
∫ ∞
−∞ p(z|θ)p(θ)dθ1dθ2

, i = 1, 2 (6)

p(z|θ) =
exp(−∑

1≤i≤N (PLi − A + 10γ log10(d0) − 5γ log10((θ1 − xi)2 + (θ2 − yi)2))2/(2σ2
s))

(
√

2πσs)N
, (7)
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Fig. 4. RMS error vs. σ, with channel parameters (A, γ and σ) estimated
via least-squares fitting of N(N − 1)/2 inter-sensor path loss measurements
(N = 20, γ = 3.8, Xc = 0, and outdoor cell with a radius of 316 m).

D. Numerical Results

Fig. 4 compares RMS location error that include the four
simple schemes, the MMSE estimator, and the CRB (actually,
the square root of CRB as given by (5)). We see that, with
only 20 sensors, the errors in estimating (A, γ, σ) lead to but a
minor degradation in performance. For larger cells with more
sensors, the results should be even better. What penalizes the
MMSE estimator is its computation-intensive nature.

Comparing the four simple schemes, with each other and
with the MMSE estimator, we see that, over the typical range
of σ (σ > 4 dB), there is little difference among WtdAv,
MinMax and ModEuc. Also, the RMS errors for these schemes
are above that for the MMSE estimator by a factor between
2 and 3. Choosing among approaches then comes down to
balancing location accuracy against computation cost (running
time, battery energy). The WtdAv scheme seems to provide
the best tradeoff while meeting the FCC accuracy requirements
under most conditions.

VII. CONCLUSION

We have postulated a sensor-assisted localization approach
for mobile terminals in cellular systems, where the power
measurements obtained from 3 ∼ 6 sensors are used to locate
the MT. We have validated it by evaluating the performance
of five algorithms in the system. Among them, a very simple
scheme called WtdAv has performance similar to MinMax,
without requiring any channel parameter information. The
MMSE estimator that ideally reaches the Cramer-Rao Bound,
on the other hand, requires a priori knowledge of all the

channel parameters and has prohibitive numerical complexity
for real-time operation. Simulation results show that, in an
outdoor cell with a radius of 1000 m, 200 sensors are sufficient
for all these schemes to meet FCC E-911 requirements in most
cases.

Although we have only discussed the localization of a single
MT, our approach has great potential to work with multiple
MTs. First, the interference between two MTs is small, unless
they are too close to each other, because the localization of
one MT solely depends on the measurements from the 3 ∼ 6
closest sensors. Moreover, Base Stations can roughly locate
the MTs by sectoring, tracking records, etc; and then the
sensors need only provide refinements of these localizations.
Further effort is needed to more fully explore this approach.
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