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Abstract—Wireless body area networks (WBANs) have to ad-
dress jamming attacks to support health-care applications. In this
paper, we present a reinforcement learning based power control
scheme for the communication between the in-body sensors
and the WBAN coordinator to resist jamming attacks. This
scheme applies Q-learning to guide the coordinator to achieve
an optimal power control strategy without being aware of the
in-body sensor’s transmission parameters and the WBAN model
of the other sensors in the dynamic anti-jamming transmission.
Additionally, a transfer learning method is adopted to accelerate
the learning speed. Stackelberg equilibria and their existence
conditions are deduced in a single time slot to upper bound
the performance of the learning based sensor power control
scheme. Simulation results show that the proposed scheme can
efficiently increase the utilities and decrease the transmission
energy consumptions for the in-body sensors and the WBAN
coordinator, and simultaneously reduce the attack possibility of
the jammer compared with standard Q-learning based sensor
power control scheme.

Index Terms—Wireless body area networks, power control, in-
body sensors, jamming attacks, game theory.

I. INTRODUCTION

MOBILE health (m-Health) equipments such as in-body
sensors that monitor chronic illnesses and save life

in emergency situations to meet clinical requirements and
improve healthcare services especially for aging people [1]
[2] have security problems such as jamming attacks in wireless
body area networks (WBANs) [3]–[5]. For instance, an insulin
pump that is attacked over WBANs might stop working
or change the dosage of drug-administration, and a hacked
pacemaker or an implanted cardiac defibrillator might lead
to heart failure. Although wireless security techniques have
made significant progress, they are not well suited for m-
Health systems. One reason for that is limited computational
power, memory and battery life of the in-body sensors in these
systems, the another reason is the transmission medium. In-
body sensors use human tissue as the transmission medium

This work was supported in part by National Natural Science Foundation of
China under Grant 61671396, Guangdong Public Creation and Environment
Programming under Grant 2016A040403048 and the Science and Technology
Innovation Project of Foshan, China under Grant 2016AG100382.

Corresponding author: Liang Xiao (e-mail: lxiao@xmu.edu.cn)

to report the sensing data, which makes the utility of the
receiver’s data unpredictable due to the fact that the trans-
mission parameters of tissue are different for different tissue
geometries and properties and changes over time in WBANs
[6].

Jamming attacks are considered to be one of the major
security problems in wireless communications due to their
open access characteristics [7] [8]. Power control is critical
to save the power consumption and improve the network
throughput against jamming attacks [9]. Game theory and
neuro-fuzzy-based approaches have performed successfully in
designing power-control algorithms. In recent years, reinforce-
ment learning (RL) based power control algorithms such as
[10]–[13] can achieve a better tradeoff between network utility
and energy efficiency for wireless networks to resist smart
jamming. However, to the best of our knowledge, the anti-
jamming transmissions in WBANs have been rarely studied,
especially the transmission between the in-body sensors and
WBAN coordinator.

In this paper, we investigate the secure transmission between
in-body sensors such as ECG sensors, insulin pumps and EMG
sensors and a WBAN coordinator such as a smart watch in
a wireless body area network. As shown in Fig.1, the in-
body sensors with limited computation resources and energy
take charge of sensing physiological data and transmitting the
sensing data to the WBAN coordinator who determines the
transmission power of the in-body sensors. More specifically,
the WBAN coordinator chooses a sensor to transmit in the
next time slot and decides the transmission power for this
sensor, and then sends the transmission power information
to the sensor. The in-body transmission power policy has to
save energy and improve the WBAN communication efficiency
against jamming. Since the repeated in-body sensor power
control process in a dynamic anti-jamming communication
game can be viewed as a Markov decision process (MDP)
[9], the WBAN coordinator can use Q-learning, a model-free
reinforcement algorithm to achieve the optimal power control
policy in the dynamic game. We propose a hotbooting-Q-
learning based in-body sensor power control scheme that uses
transfer learning who initializes the Q-learning parameters
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with the experiences in similar scenarios to avoid random
exploration at the beginning of learning. To examine the
effectiveness of this power control scheme, we formulate a
Stackelberg game to model the sequential interactions between
the in-body sensor and the jammer in a WBAN, and deduce
the Stackelberg equilibria (SEs) of the game to provide an
upper bound of the in-body sensor power control performance
under different WBAN conditions. Simulation results show
that this hotbooting-Q-learning based in-body sensor power
control scheme can converge to SEs after multiple time slots
in the dynamic game. This scheme can efficiently increase the
utility and decrease the energy consumption of the in-body
sensors, and simultaneously decrease the attacker’s jamming
possibility.

The main contributions of this paper include the following:
1) We investigate secure transmission between in-body

sensors and a WBAN coordinator outside the body, taking
into consideration the body channel characteristics.

2) We formulate a reinforcement learning based power
control strategy for in-body sensors to efficiently resist smart
jamming attacks without being aware of the WBAN trans-
mission parameters and the jamming models. In addition,
hotbooting learning is used to accelerate the learning rate.

3) We formulate an anti-jamming communication game
model for WBANs with different transmission paths and
provide the SEs of the game to bound the performance of
the power control scheme.

The remainder of the paper is organized as follows. In
Section II, related works are briefly reviewed, while in Section
III, the system model is presented. We present a hotbooting-
Q-learning based in-body sensor power control strategy in
Section IV. In Section V, we present the anti-jamming in-body
transmission Stackelberg game, and derive the Stackelberg
equilibria of the game to evaluate the convergence perfor-
mance of the power control scheme in the dynamic game.
Simulations and conclusions are presented in Sections VI and
VII, respectively.

II. RELATED WORKS

In WBANs, the energy efficiency and data security require-
ments are highlighted. In view of saving energy, a novel trans-
mission power control (TPC) mechanism, named Proactive-
TPC, was proposed in [14], which combined closed-loop
control with posture and motion detection to minimize energy
waste and radio interferences. An accelerometer-assisted TPC
scheme was proposed in [15], which exploited the periodic
fluctuations of link qualities to improve the transmission
energy efficiency. The joint routing and power control scheme
proposed in [16] aims at minimizing energy consumption un-
der strong cross-technology interference while satisfying node
reachability and delay constraints. The self-adaption scheme
analyzed in [17] helps resource-constrained nodes enhance
their performance by saving battery power and maintaining the
quality of transmitted data. In this scheme, mutual information
is used to estimate the temporal correlation, and reinforcement
learning (RL) is used to estimate the appropriate active-sleep
schedule for the sensor nodes to conserve battery power. The

relay selection and power control scheme proposed in [18]
uses a non-cooperative game to maximize the transmission en-
ergy efficiency under quality of service constraints in WBANs.

To solve the security problems, especially jamming prob-
lems, game theory has been used successfully. For instance, a
Bayesian Stackelberg game with incomplete information was
investigated in [19] to resist smart jamming attacks. The game-
theoretic model of the interactions between a jammer and
a communication node presented in [20] exploits a timing
channel to improve resilience to jamming attacks, in which
both the Nash equilibrium and Stackelberg equilibrium are
provided. A set of deception-based defense strategies were
proposed in [21] to protect the CRNs from the deceiving
attack. Other works, such as wireless channel monitoring and
anomaly detection schemes, were developed in [22] to protect
medical devices.

As the channel condition is hard to estimate in wireless
sensor networks, reinforcement learning techniques are effec-
tive for optimal power control decision making. Anti-jamming
problems with discrete power strategies were investigated in
[10], in which a hierarchical power control algorithm (HPCA)
based on Q-learning was proposed to obtain the Stackel-
berg equilibrium. The anti-jamming underwater transmission
framework presented in [11] applies deep Q-learning to control
transmission power and uses transducer mobility to address
jamming in underwater acoustic networks. An anti-jamming
scheme was formulated in [12] based on a zero-sum game,
and a Q-function-based approach was proposed to reduce the
computation complexity.

III. SYSTEM MODEL

A. WBAN model

A typical m-Health system as shown in Fig.1 consists of a
WBAN, a cotroller and a remote cloud server. Throughout
this paper, we focus on the transmission security and the
power consumption in the WBAN that is comprised of in-
body sensors and a coordinator. The in-body sensors take
the responsibility of physiological data collection, whereas the
WBAN coordinator manages the transmission power control
strategy against jamming. A single channel, with center fre-
quency f0 and bandwidth W , is assumed to be available for
the transmission between the in-body sensors and the WBAN
coordinator. For in-body sensors, communication is the main
energy-consuming step in measurement and transmission tasks
[17]. Thus, the sensors’ energy saving requirements can be
mainly deemed as transmission energy saving requirements.
To save energy, the in-body sensors switch between sleep and
awake modes. The details of the switching strategies in that
process will be presented in our next work.

When the physiological data transmission of a in-body
sensor is required, the sensor switches to the waken mode
firstly, then transmits a request message including priority
information to the WBAN coordinator. After that, it returns
to the sleeping mode until an ACK message is received.
Once the WBAN coordinator receives transmission request
messages from the in-body sensors, it sets the transmission
order according to the priority information. After the WBAN
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Fig. 1: Generic transmission architecture for m-Health appli-
cations

coordinator has identified an in-body sensor as the transmitter
in the next time slot, it checks the transmission power of this
selected in-body sensor and estimates the sensor’s transmission
parameters accordingly. It examines the bit error rate (BER) of
the received message and estimates the signal to interference
plus noise ratio (SINR) based on the BER. Then, the energy
consumption of the in-body sensor is observed by the WBAN
coordinator. The utility of the in-body sensor is computed on
the basis of the BER, the SINR and the energy consumption.
According to the result, the WBAN coordinator formulates
the power control strategy for the in-body sensor. Finally,
the WBAN coordinator sends an ACK message with the
transmission power strategy information to the in-body sensor.
As an attack is detected, the WBAN coordinator will either
ignore the request messages from the in-body sensors or
manage the transmission power against the attack.

Let c denotes the WBAN coordinator and x(k) denotes the
transmission power of c at time slot k, with 0 ≤ x(k) ≤ Pc,
where Pc is the maximum transmission power of the WBAN
coordinator. The transmission energy consumption of the co-
ordinator is denoted by Ec.

Similarly, let s denotes the chosen in-body sensor and z(k)i

denotes the transmission power of the i − th in-body sensor
at time slot k, with 0 ≤ z(k)i ≤ Ps, where Ps is the maximum
transmission power of the in-body sensor. Let Esi denotes the
transmission energy consumption of the i− th in-body sensor.
To simplify the analysis process, the i− th in-body sensor is
assumed to be chosen to take part in the transmission within
the time slot k, and the indexes i and k are dropped when no
confusion occurs.

B. Jamming model

In this paper, we formulate a jamming model based on
reactive jamming. The reason is that reactive jamming is
more powerful than other types of jamming [23]. Thus, the
performance of the proposed anti-jamming algorithm in this
scenario could be referenced as a lower limit for other types
of scenarios.

To maximize the jammer’s effectiveness and consume the
energy of the in-body sensor and the WBAN coordinator,
the reactive jammer, denoted by j, chooses jamming power
y(k) at time slot k according to the network state, such as
the transmission power of the in-body sensor and the WBAN
coordinator and the energy consumption. The jamming power

is constrained by 0 ≤ y(k) ≤ Pj , where Pj is the maximum
transmission power of the jammer. Ej is used to denote the
transmission energy consumption of the jammer. di,j denotes
the distance between the jammer and the i−th in-body sensor,
while hi,j represents the corresponding channel power gain.

C. Channel model

As shown in Fig.1, the WBAN coordinator is close enough
to the body surface to make the transmission channel between
in-body sensors and the WBAN coordinator an in-body chan-
nel. According to [24], the in-body channel path loss can be
calculated as

PLb[dB] (di,c) = PL0[dB] + a

(
di,c
d0,c

)n
+N (µ (di,c) , σ (di,c)) ,

(1)

where di,c is the distance between the i− th in-body sensor
and the WBAN coordinator, PL0[dB] is the reference path loss
at distance d0,c = 5mm, a is a fitting constant, n is the path
loss exponent, which is based on the communication channel,
and N is a random variable that is normally distributed with a
mean of µ and a standard deviation of σ. For the parameters
in function (1), refer to reference [24].

On the other hand, the path for the transmission between
in-body sensors and the jammer is composed of an in-body
channel and an in-air channel. The distance between the
jammer and the body surface is assumed to be sufficiently
larger than the distance between the in-body sensors and the
body surface. Thus, the transmission channels between the in-
body sensors and the jammer are just considered to be in-air
channels.

The path loss of the in-air channel, with air as the trans-
mission medium, is given by [25]

PLa[dB] (d) = 20log10
4πd0,j
λ

+ 10βlog10
d

d0,j
+ s, (2)

where λ is the wavelength in meters, β is the path loss
exponent, s is the shadow fading component, d0,j is the
reference distance, and d, which is the distance between the
body surface and the jammer, is relative to d0,j(= 1m).

For ease of reference, the symbols and notations used in
this paper are summarized in Table I.

IV. IN-BODY SENSOR POWER CONTROL SCHEME BASED
ON RL

The repeated interactions between the in-body sensors and
the jammer in WBAN can be modeled as a dynamic anti-
jamming communication game, in which the in-body sensor
power control strategy is decided by the WBAN coordinator
according to channel states, BER and energy consumpition
observed in previous time slot; whereas the jamming power is
decided by the jammer based on the previous communication
in WBAN. Given that the channel states in the next time slot
are independent of their previous values, the power control
process can be modeled as a finite Markov decision process
(MDP). In addition, the channel state of each transmitter,
especially for the in-body channels, is hard to estimate in
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TABLE I: Summary of symbols and notations

Symbols Notations
x(k)(

y(k), z
(k)
i

) Transmission power of the WBAN
coordinator (jammer, i-th in-body sensor)

at time slot k

Pm
Maximum transmission power of m,

m ∈ {s, c, j}

di,c(j)
Distance between the i-th in-body sensor
and the WBAN coordinator (jammer)

d0,m
Reference distance in the channel model,

m ∈ {c, j}

d
Distance between the body surface

and jammer
hm Channel power gain, m ∈ {s, c, j}

em
Unit transmission energy consumption

of m, m ∈ {s, c, j}

Em
Transmission energy consumption

of m, m ∈ {s, c, j}
PLm Path loss of transmitter m, m ∈ {s, c, j}
η Transmission noise

um
Instantaneous utility of transmitter m,

m ∈ {s, c, j}
Lm Power levels of m, m ∈ {s, c, j}
Am Action set of transmitter m, m ∈ {s, c, j}
δ Learning discount factor
γ Learning rate

every time slot [9]. Therefore, Q-learning, as a model-free
RL algorithm, can be adopted to help the WBAN coordinator
formulate a power control strategy without considering the
channel states and the utility models of the other transmitters.
Furthermore, to improve the convergence rate, a hotbooting
technique [9] can be employed, from which the power control
experiences in similar scenarios can be used to initialize the
Q-table at the beginning stage of learning.

In the process of achieving an optimal power control strat-
egy, each transmitter’s goal is to maximize its instantaneous
utility in every time slot in order to obtain the maximum
long-term benefit. The instantaneous utility, denoted by um,
is mainly dependent on the SINRm, m ∈ {s, c, j}. Thus, we
define the utility function as

us (z, x, y) = SINRs − Es − PLs, (3)

uc (z, x, y) = SINRc − Ec − PLc, (4)

uj (z, x, y) = −uc + Es + PLs − Ej − PLj , (5)

where SINRm denotes the SINR of transmitter m, and Em
denotes the observed energy consumption, m ∈ s, c, j.

First, we conduct several anti-jamming power control ex-
periments in similar scenarios before learning, and the outputs
constitute a Q-table, denoted by Q∗, which is used to initialize
the Q-table, denoted by Q, in Algorithm 1. Then, in time
slot k, in-body sensor i is selected to transmit in the next

time slot. After the WBAN coordinator receives a request
message from the in-body sensor, it observes the sensor’s
transmission power z(k), which is divided into Ls levels, and
then examines the BER(k)

s of the received message, which is
used to estimate the sensor’s SINR(k)

s in the following. In
addition, the energy consumption E(k)

s of the in-body sensor
is evaluated. The SINR(k)

s and E(k)
s are used to constitute the

state in Q-learning of the in-body sensor in the next time slot,
denoted by S(k+1)

s = [SINR
(k)
s , E

(k)
s ]. Then, according to the

state, the WBAN coordinator evaluates the in-body sensor’s
utility and chooses a transmission power from the in-body
sensor’s power selection sets, denoted by As = [z]1×Ls

, to
obtain the maximum benefit in the next transmission. For the
sake of simplifying the calculation, the transmission power
is normalized by Ps, which is the maximum transmission
power of the in-body sensor; then, z will be constrained by
z ∈ [0, 1]. Similarly, the power selection sets of the WBAN
coordinator and the jammer are denoted by Ac = [x]1×Lc

and Aj = [y]1×Lj
, respectively. Also, they are constrained

by x ∈ [0, 1] and y ∈ [0, 1] after normalizing by Pc and Pj ,
respectively.

The Q-function of the in-body sensor can be expressed as in
(6), which is used to update the Q-table to efficiently lead the
WBAN coordinator towards the optimal transmission power
for the in-body sensor.

Q
(
Ss

(k), z(k)
)
= (1− γ)Q

(
Ss

(k), z(k)
)

+ γ
[
us

(
Ss

(k), z(k)
)

+δV (S(k+1)
s )

]
, (6)

V
(
Ss

(k)
)
= max
zk∈As

Q
(
Ss

(k), z(k)
)
, (7)

where γ denotes the learning rate of the WBAN coordinator,
and δ denotes the discount factor for the benefit of future
transmission power. V (Ss) denotes the value function, which
means that the optimal transmission power selected from As
is the maximum Q value in the in-body sensor’s Q-table.

The transmission power choosing strategy is based on the
ε−greedy strategy [11]. The WBAN coordinator chooses a
transmission power that can maximize the in-body sensor’s Q
function with a high probability, 1 − ε, while other powers
have low probability, ε

Lc+1 , where ε ∈ (0, 1).
After iteration of the Q value, the optimal transmission

power strategy of the in-body sensor will be obtained. The
process is described by Algorithm 1.

V. PERFORMANCE ANALYSIS

To examine the effectiveness of the transmission power
control scheme proposed above to resist smart jamming, we
model a sequential interaction between the in-body sensor and
the jammer in the WBAN as a Stackelberg game G. First,
the in-body sensor sends a request message to the WBAN
coordinator (the leader), and then, the coordinator as a vice
leader determines the transmission power z(k) for the in-body
sensor after having acquired the channel state and predicted the
jamming power from the jamming history. On the other hand,
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Algorithm 1 Power control strategy of the in-body
sensor formulated by the WBAN coordinator based on
hotbooting-Q-learning.
Set δ, γ, Am, Lm, m ∈ s, c, j;
Initialize Q (Ss, z) = Q∗, V (Ss) = 0,
∀z, x, y ∈ Am, S(0)

s = [SINR
(0)
s , E

(0)
s ];

For k = 1, 2, 3, ...
Choose transmission power for the in-body sensor,
z(k) ∈ As, based on the ε-greedy strategy;
Tell the in-body sensor to transmit with power
z(k);
Receive message from the in-body sensor;
Examine BER(k)

s and estimate SINR(k)
s ;

Observe E(k)
s ;

Compute u(k)s ;

Update Q
(
S
(k)
s , z(k)

)
via (6);

Update V
(
S
(k)
s

)
via (7);

Update S(k+1)
s = [SINR

(k)
s , E

(k)
s ];

End for

the reactive jammer is ready to jam once the transmission
initiated by the in-body sensor or the WBAN coordinator is
sensed. The jamming power is also dependent on the channel
state and the opponents’ transmission power.

Assume that all the transmitters have the ability to freely
adjust their personal transmission power and have perfect
knowledge of the transmission parameters, such as the channel
gains (hm), the path loss (PLm) models and the unit transmis-
sion energy consumptions of each other (em), m ∈ {s, c, j}.
Then, on the basis of equations (3) ∼ (5), the utility function
can be rewritten as

us (z, x, y) =
hsz + hcx

η + hjy
− esz − PLs, (8)

uc (z, x, y) =
hsz + hcx

η + hjy
− ecx− PLc, (9)

uj (z, x, y) = −uc + esz + PLs − ejy − PLj , (10)

where η denotes the transmission noise, and it is assumed
to be additive white Gaussian noise (AWGN).

The Stackelberg equilibrium (SE) of the game is denoted
by (z∗, x∗, y∗). This means that the optimal power control
strategy of each transmitter is based on the condition that its
opponents follow the SE strategy. (z∗, x∗) are determined by
the WBAN coordinator, while y∗ is determined by the jammer.
Thus, the SE of game G is given by

z∗ = arg max
0≤x≤Ps

us (z, x
∗, y∗) , (11)

x∗ = arg max
0≤x≤Pc

uc (z
∗, x, y∗) , (12)

y∗ = argmax
y≥0

uc (z
∗, x∗, y) . (13)

Theorem 1. The efficient power control game for secure
transmission in WBANs has an SE:

(z∗, x∗, y∗) =

(
ejhs
4hjes2

, 0,
hs

2hjes
− η

hj

)
(14)

if 

es < min

(
hs
2η
,
echs
hc

)
, (15a)

ec >
2eshc
hs

, (15b)

η <
hs
2es

. (15c)

Proof. By (8), ∀0 ≤ z ≤ Ps, we have

us(z, 0,
hs

2hjes
− η

hj
) =

√
hsejz

hj
− esz − PLs. (16)

Then,

∂us

(
z, 0, hs

2hjes
− η

hj

)
∂z

=
hsej
2hj

√
hj

hsejz
− es, (17)

and

∂2us

(
z, 0, hs

2hjes
− η

hj

)
∂z2

= − 1

4z2

√
hsejz

hj
< 0. (18)

By (17) and (18), if (15a) holds, then the maximum value
of us is at z̃ = hsej

4hjes2 ∀0 ≤ z ≤ Ps, i.e.,

us

(
hsej
4hjes2

, 0,
hs

2hjes
− η

hj

)
> us

(
z, 0,

hs
2hjes

− η

hj

)
.

(19)

Thus, (11) holds for (14).
By (9), ∀0 ≤ x ≤ Pc, we have

uc

(
ejhs
4hjes2

, x,
hs

2hjes
− η

hj

)
=(

2eshc
hs

− ec
)
x+

ejhs
2hjes

− PLc. (20)

If (15b) holds, then ∂uc

∂x < 0, uc therefore decreases with
x, and

uc

(
ejhs
4hjes2

, 0,
hs

2hjes
− η

hj

)
> uc

(
ejhs
4hjes2

, x,
hs

2hjes
− η

hj

)
.

(21)

Thus, (12) holds for (14).
By (10), ∀0 ≤ y ≤ Pj , we have

uj

(
ejhs
4hjes2

, 0, y

)
= − ejhs

2

4hjes2 (η + hjy)
− ejy +

ejhs
4hjes

+ PLc + PLs − PLj . (22)
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Similarly, if (15c) holds, then the maximum value of uj is
at ỹ = 1

hj

(
hs

2es
− η
)

, which means (13) holds for (14).

Thus,
(

ejhs

4hjes2 , 0,
hs

2hjes
− η

hj

)
is an SE of game G.

Remark: Being conscious of a jamming attack, the WBAN
coordinator adjusts the transmission power to resist jamming.
If the in-body sensor has low energy consumption, it will
be informed to transmit with a specified power, as shown in
(15a) and (15b), whereas the WBAN coordinator will stop
transmitting if its transmission energy consumption is high.
Once the transmission between the in-body sensor and the
WBAN coordinator is sensed by the jammer, the jammer will
launch an attack if the transmission noise is low, as shown
in (15c). The transmission power is related to the channel
conditions, as shown in (14).

Theorem 2. The efficient power control game for secure
transmission in WBANs has an SE:

(z∗, x∗, y∗) = (0, Pc, 0) (23)

if 

es >
hs
η
, (24a)

ec <
hc
η
, (24b)

ej >
hjhcPc
η2

. (24c)

Proof. By (8), ∀0 ≤ z ≤ Ps, we have

us (z, Pc, 0) =

(
hs
η
− es

)
z +

hcPc
η
− PLs. (25)

If (24a) holds, then us decreases with z, and

us (0, Pc, 0) =
hcPc
η
− PLs > us (z, Pc, 0) . (26)

Thus, (11) holds for (23).
Similarly, by (9), ∀0 ≤ x ≤ Pc, we have

uc (0, x, 0) = (
hc
η
− ec)x− PLc. (27)

If (24b) holds, then uc increases with x, and

uc (0, Pc, 0) = (
hc
η
− ec)Pc − PLc > uc (0, x, 0) . (28)

Thus, (12) holds for (23).
By (10), ∀0 ≤ y ≤ Pj , we have

uj (0, Pc, y) = −
hcPc
η + hjy

− ejy + ecPc + PL, (29)

where PL = PLc + PLs − PLj . Then,

∂uj (0, Pc, y)

∂y
=

hjhcPc
(η + hjy)2

− ej , (30)

and

∂2uj (0, Pc, y)

∂2y
= − 2hj

2hcPc
(η + hjy)3

< 0. (31)

Thus, the maximum value of uj is at ∂uj(0,Pc,y)
∂y = 0. If

(24c) holds, then ỹ = 1
hj
(
√

hcPchj

ej
− η) < 0, and ỹ = 0 for

0 ≤ y ≤ Pj .
Thus, (13) holds for (23), and (0, Pc, 0) is an SE of game

G.

Remark: The in-body sensor will not be told to transmit
if its transmission energy consumption is high, even if there
is no jamming power, as shown in (24a), while the WBAN
coordinator will transmit with maximum power if no jamming
attack is detected and its transmission energy consumption is
low, as shown in (24b). For the jammer, if its channel condition
is not good enough, it will not attack, as shown in (24c).

Theorem 3. The efficient power control game for secure
transmission in WBANs has an SE:

(z∗, x∗, y∗) = (Ps, 0, 0) (32)

if 
es <

hs

η ,

ec >
hc

η ,

ej >
hjhsPs

η2 .

(33)

Proof. The proof is similar to that of Theorem 2. Hence, we
skip the analysis.

Remark: The in-body sensor will transmit with maximum
power if its transmission energy consumption is low. On
the contrary, if the transmission energy consumptions of the
WBAN coordinator and the jammer are high, they will keep
silent to save energy, as shown in (33).

Numerical results with d = 30, di,c = 0.08, Ps = 0.1,
Pc = 1, Pj = 1, es = 10, ec = 5, and ej = 20, with fixed
hc = 0.5 and hj = 0.5 and with variable hs, which varies
from 0.2 to 0.6, are shown in Fig.2. As expected, the SINR
of the message transmitted from the in-body sensor increases
with the channel power gain, while the BER decreases. This
explains the fact that the power control strategies decided by
the WBAN coordinator and the jammer are all based on the
channel states, such as the channel power gain hm, the unit
transmission energy consumption em, m ∈ s, c, j, and the
transmission noise η. The jammer only launches an attack
when it has good channel state and the transmissions between
the in-body sensors and the WBAN coordinator are detected.
An in-body sensor with lower energy consumption has higher
SINR and lower BER, as also shown in these plots. This
is because the WBAN coordinator will keep silent when its
energy consumption is relatively high and will allow the sensor
to transmit to gain maximum utility.

VI. SIMULATION RESULTS

In this section, we provide simulation results demonstrating
the performance of the proposed power control scheme. We
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Fig. 2: Transmission performance at the SE, with Ps = 0.1,
Pc = 1, Pj = 1, hc = 0.5, hj = 0.5, ec = 30 and ej = 20

consider an in-body sensor that is at a depth of 80 mm from
the body surface and is chosen to take part in a transmission
event in the k − th time slot. Furthermore, considering the
requirement of a high data transmission rate in WBANs [24],
an ultra-wide band (UWB) with a center frequency of 4.2 GHz
is adopted. The parameters of the in-body channel model are
chosen from TableII, which is referenced from [24].

To evaluate the performance of the proposed hotbooting-
Q-learning power control scheme, the SINR, BER and utility
are estimated in continuous time slots. For comparison, power
control schemes based on traditional Q-learning and random
selection are performed in the same scenario. Simulations are
conducted with the maximum transmission power of Ps = 0.1,
Pc = 1, and Pj = 1 and distances of d = 30 and di,c = 0.08.

From the plots shown in Fig.3∼Fig.5, it is easy to see that
the learning based scheme has significantly better performance
than the random selection based scheme. For instance, Fig. 3

TABLE II: Parameters of the in-Body Channel

Parameter Value
PL0 6.3 dB
a 11.6
n 0.5

d

5mm µ = 2.7 σ = 5
40mm µ = 5.3 σ = 8.1
80mm µ = 8.2 σ = 6.6
120mm µ = 2.7 σ = 4.9

shows the SINR of the three schemes, from which we can see
that the SINR increases from 2.57 at the beginning to 3.81 in
the RL-based strategy, which is approximately 65.7% higher
than that in the random selection strategy, which fluctuates
around 2.3. Moreover, the SINR in the RL-based strategy
converges to nearly 4, that is, the SINR at the SE shown
in Fig.2(a), after multiple time slots, which illustrates the
effectiveness of the learning based strategies. Fig.4 displays
the BER of the schemes, from which we can observe that the
curves of BER decrease from 0.09 to 0.03 in the RL-based
strategy, which is approximately 72.7% lower compared with
the random selection strategy, whose value fluctuates around
0.11. This is in good agreement with the fact that the BER is
decreasing with increasing SINR. Additionally, we can observe
that the BER converges efficiently to a value at the SE, which
is shown in Fig.2(b). The investigation of the utility of each
transmitter in different schemes is shown in Fig.5. This also
shows the advantages of the RL-based strategies. In Fig. 5(a)
and Fig. 5(b), the utilities of the WBAN coordinator and the in-
body sensor both increase by approximately 50% compared to
the random selection strategy, whereas in Fig. 5(c), the utility
of the jammer decreases by approximately 3% compared to
the random selection strategy. These results indicate that the
increasing SINR and decreasing BER yield improvements to
the utility, and the increasing utility of the in-body sensor and
the WBAN coordinator results in the decreasing utility of the
jammer.

Furthermore, from Fig.3∼Fig.5, we can see that the
hotbooting-Q-learning based strategy has better performance
than a traditional Q-learning based strategy. As shown in these
plots, the hotbooting-Q-learning based strategy converges to
the SE at approximately the 3000th time slot, which is
faster than the value of 11000 in the traditional Q-learning
based strategy. Additionally, the hotbooting-Q-learning based
strategy will prompt the WBAN coordinator and the sensor to
obtain higher long-term utilities than the other strategies, and
at the same time, if the WBAN coordinator adopts hotbooting-
Q-learning, the jammer’s long-term utility will decrease dra-
matically compared to the other strategies.

VII. CONCLUSION

In this paper, we have investigated the in-body sensor trans-
mission in WBANs against jamming attacks and presented
a hotbooting-Q-learning based power control scheme without
the knowledge of the in-body transmission parameters and the
game model. In particular, the use of a hotbooting technique
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in RL
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Fig. 4: BER of the received message from the in-body sensor
in RL

accelerates the learning speed of Q-learning and improves the
utilities of the in-body sensor and WBAN coordinator. We
have formulated the interactions among the in-body sensor,
the WBAN coordinator, and the jammer as a Stackelberg
game, and derived the Stackelberg equilibrium of the game
to evaluate the performance of the in-body sensors after
convergence in the dynamic anti-jamming transmission game.
Simulation results have shown the efficiency of the proposed
in-body sensor power control scheme. For the future work, we
will study the optimal transmission scheduling strategy among
the in-body sensors for further energy saving.
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