| IR KBRS EIERTE

Mobile Offloading for Cloud-based Malware

Detections with Learning

Liang Xiao Yanda Li

EHlp N

Pk M
U NOVLI28,/|[2016 Y




Outline

» Background & motivation

e Cloud-based malware detection for mobile devices:
* Challenges & opportunities by big data

e Nash equilibrium (NE) of the cloud-based malware
detection game:
o Competition & cooperation among mobile devices

* Reinforcement learning based cloud malware detection
e Conclusions
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Motivation

® Malware: Viruses, trojans, spywares and other intrusive codes

® Aim to disrupt operations, access private information, display
unwanted advertising, etc
® Hummingbad malware that generates fake clicks for adverts infected 10
million Android smartphones and made $300,000/mon for the attacker

® The average smartphone infection rate increased 96% in the first half of
2016, compared to the second half of 2015

Mobile devices

Technology

Malware hits millions of Android phones
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Big Data in Malware Detections

In 2015, 144 million new malwares were found: 274 new unknown

malware were produced and launched in every minute

The number of Android malware samples in Nokia malware database

increased by 75% in the first half of 2016
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Malware Detections

® Signature-based detection: Identify malwares by their signatures
* Rely on human expertise in creating labels for malicious behaviors
® Low computational complexity and low false alarm rate
® Vulnerable to zero-day attacks

® Anomaly-based detection: Use the knowledge of normal behavior
® Detect new malwares
® Large sample size required in the training phase

° High computation complexity & high false alarm rate

o Hybrid detection: Signature—based + anomaly—based detection techniques

Malwares
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Malware Detection at Mobile Devices

* Big data in malware detection: A large number of traces generated by

the applications run at a mobile device
® Challenges:
* High storage cost
* Long detection delay
® Zero-day malware attacks: Attack signatures not downloaded in
time
® Benetits: Detection accuracy depends on the size of the virus

database downloaded from security servers

Size of the whole operation data

117903 lines of log data

m Size of the generated log data

The log data evaluated in

v Norton security application
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Cloud-based Malware Detection System

® Behavior-based malware detection system: k-means clustering [lker’ 11]

® Online cloud anomaly detection: SVM [Watson’16]

Mobile device
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° Advantages:

Remote Server-Behavior-Based Malware Detection Server

Data manipulation
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* Fast computation to run more advanced and complex detection algorithms

® More accurate detection with a large—size signature database

o

® Address zero—day vulnerabilities
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Mobile Offloading in the Malware Detection

® (Cloud-based malware detection vs. local detection

® Transmission delay, computation speed, detection accuracy, storage cost

o User competition VS. cooperation in the malware detection

* Compete for the limited network bandwidth

e Contribute the malware signature database to improve the malware

detection accuracy at the cloud
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Mobile device AP/BS

e Connectivity
technology(4G/3G/Wi-Fi)

e Time-varying radio bandwidth

e Queue delay

e Transmission cost

e CPU speed

e Storage of log data
e Data privacy

e Energy
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Cloud

e Powerful computation

e L arge-size malware
database

e Runtime detection

e Request delay




Mobile Offloading Game
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Static Cloud-based Detection Game

® NE of the static game: No mobile station can benefit by unilaterally
leaving the NE strategy , ( x;k, x:) =u,(x, x:.), Vx:.
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Detection Performance at the NE
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Dynamic Malware Detection Game

® Dynamic cloud-based malware detection game: Repeated
interactions among mobile devices in time-variant network

environments

® Q-learning based malware detection: Oftloading rate is chosen
without knowing the network model and the app trace generation
model

® A model-free reinforcement learning algorithm for an agent to derive

the optimal strategy via trial-and-errors in a dynamic game

Offloading strategy Slate 0 0§

4 Markov decision
Reward Brocess Q Q
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Q-Learning Based Malware Detection

e State: Network bandwidth and the ofﬂoading rates of the
other mobile devices at last time, S = [Xk -l bk ]

—j
* Q-tunction: Estimated discounted long-term utility for each
state-action pair

° Update via iterative Bellman equation:

O(s*,x") < (1= 0", x") + y (u,(s",x") + 8 max O™, )

Learning rate: Weigh the current Q-function \
Discount factor: Uncertain future reward

® Encourage exploration with € —greedy policy: Not trapped
in the local optimum at the beginning of the game




Q-Learning Based Offloading in Malware Detections

Mobile device
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Simulation Results

Cloud computation resource==3 Gbps
Trace generation speed: 1 Mbps
Transmission cost factor= 0.1

Accuracy coefficient= 0.8

Radio bandwidth € {1/6,1/5,1/4}*10MHz
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Total utility
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Conclusion

® We formulated a cloud-based malware detection game and provided the

NE of the game to investigate the user cooperation and competition

® A Q-learning based malware detection strategy was proposed in the
dynamic game with time-variant radio networks
® Reduce the detection delay of mobile users by 33%

® Increase the detection accuracy gain by 40%

e Further work:
* Improve the cloud-based malware detection game model

* Improve the performance of the Q-learning based malware detection with

deep learning and data mining in dynamic environments

® Build prototype and evaluate the performance via experiments
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