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 Background & motivation
 Challenges & opportunities from big data

 Cloud-based malware detection model for mobile devices
 Learning based malware detection schemes
 Hotbooting-Q based malware detection
 DQN-based malware detection

 Simulation results
 Conclusion
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 Malware refers to viruses, Trojans, spywares and other intrusive code
 Used to disrupt computer or mobile operations, gather sensitive information, gain 

access to private computer systems, or display unwanted advertising [Idika’07]

 The average smartphone infection rate increased 96 percent in the first half of 
2016, compared to the second half of 2015 [Nokia’16]
 Up to 10 million Android smartphones around the world have been infected by 

Hummingbad malware that generates fake clicks for adverts, which makes 300,000$ 
per mon for the malware attacker [BBC’16]

Motivation

IPS.3: Reinforcement Learning Based Mobile Offloading for Cloud-based Malware Detection, X. Wan, 
G. Sheng,  Y. Li, L. Xiao, X. Du



Big Data in Malware Detection
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8000000 Android 
malware samples

2000000 Android 
malware samples

 In 2015, about 144 million new malwares were found, in which 274 new unknown 
malware were produced and launched every minute [Check-Point’16]

 The number of Android malware samples in Nokia malware database increased by 75 
percent in the first half of 2016 [Nokia’16]
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 Number of Android 
malware samples in 
Nokia malware
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Malware Detection Methods
 Signature-based detection

 Rely on human expertise in creating the label of malicious behaviors
 Applicable for light computation on smartphones
 Fail to address zero-day malware: an attack not publicly reported or 

announced before becoming active
 Anomaly-based detection

 Applicable to address various types of malwares
 A large volume of samples required in the training phase
 High computation complexity & high false alarm rate

 Hybrid detection
 Raise detection rates of known malwares
 Decrease the false positive rate for unknown attacks
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Challenges of Malware Detection at Smartphones
 Big app trace data: A large number of log data is generated by the 

applications run at smartphone
 High storage cost
 Limited computational speed to run the detection algorithm
 Detection accuracy limited by the size of the virus database at 

the smartphone downloaded from the security servers
 Zero-day malware attacks

117903 lines of log data 
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 Advantages of cloud-based detection:
 Fast computation to run more advanced and complex detection algorithms 
 More accurate detection with a large-size signature database
 Address zero-day vulnerabilities
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Cloud-based Malware Detection System
 Online cloud anomaly detection for both system and network level data 

using dedicated monitoring components based on SVM [Watson’16]
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Mobile Offloading in the Cloud-based Malware Detection
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 Smartphone divides real-time app traces and labels with serial numbers
 Offload a portion of the traces to the cloud for malware

 Cloud-based detection vs. local detection
 Transmission delay, CPU occupying, detection accuracy, storage cost

 Mobile users in the malware detection 
 compete for the cloud computational resource and the network bandwidth, 

and cooperate to improve the malware detection accuracy at the cloud



Mobile Offloading Model
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 Repeated interactions among mobile devices in the cloud-based malware 
detection under time-variant network environment 

 Q-learning based malware detection: Offloading rate is chosen without 
knowing the network bandwidth model and the app trace generation 
model

 A model-free reinforcement learning algorithm for an agent to derive 
the optimal strategy via trial-and-errors



 State: Network bandwidth and the offloading rates of the other devices at 
last time  

 Q-function: Estimated discounted long-term utility for each state-action 
pair

 Q-function update based on iterative Bellman equation: Estimate of 
optimal future value

 Encourage exploration with ε-greedy policy: Avoid tracking in the local 
optimum at the beginning 
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Q-Learning based Malware Detection
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Hotbooting Q-learning based Malware Detection
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 Hotbooting technique that initializes the Q-value based on the 
training data in similar scenarios 
 Decrease the random explorations at the beginning
 Accelerate the learning speed in the dynamic game

App traces generation 
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DQN-based Malware Detection
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Simulation Results 
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 We have formulated a cloud-based malware detection model, 
in which the mobile devices compete for the limited radio 
transmission resource and cooperate to improve the malware 
detection accuracy of the security server.

 A hotbooting-Q based mobile offloading strategy has been 
proposed to improve the malware detection performance 
compared to the Q-learning based scheme, and the 
performance is further improved by the DQN-based malware 
detection.
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Conclusion
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Questions?

lxiao@xmu.edu.cn
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